首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
We review the various optical pressure sensors that are suitable for high-pressure and high-temperature studies in a diamond anvil cell. Two different kinds of sensors are considered: those based on the pressure shift of a fluorescence line (ruby, SrB4O7:Sm2+) and those based on the pressure shift of a Raman line (c-BN, diamond). The calibration of those sensors are presented in detail, and discussion is made on their useful pressure and temperature ranges.  相似文献   

2.
Anisole is a promising candidate for use as fluorescent tracer for gas-phase imaging diagnostics. Its high-fluorescence quantum yield (FQY) and its large Stokes shift lead to improved signal intensity (up to 100 times stronger) compared with the often used toluene. Fluorescence spectra and effective fluorescence lifetimes of gaseous anisole were investigated after picosecond laser excitation at 266 nm as a function of temperature (296–977 K) and bath gas composition (varying amounts of N2 and O2) at total pressures in the range of 1–10 bar to provide spectroscopic data and FQY for applications, e.g., in in-cylinder measurements in internal combustion engines. Fluorescence spectra of anisole extend from roughly 270–360 nm with a peak close to 290 nm at 296 K. The spectra show a red-shift with increasing temperature (0.03 nm/K) and O2 partial pressure (5 nm from N2 to air). In the investigated temperature range and in pure N2 at 1 bar total pressure the effective fluorescence lifetime drops with increasing temperature from 13.3 ± 0.5 to 0.05 ± 0.01 ns. Increasing the total pressure of N2 leads to a small decrease of the lifetime at temperatures above 400 K (e.g., at 525 K from 4.2 ± 0.2 ns at 1 bar to 2.7 ± 0.2 ns at 10 bar). At constant temperature and in the presence of O2 the lifetimes decrease significantly (e.g., at 296 K from 13.3 ± 0.5 ns in N2 to 0.40 ± 0.02 ns in air), with this trend diminishing with increasing temperature (e.g., at 675 K from 1.02 ± 0.08 ns in N2 to 0.25 ± 0.05 ns in air). A phenomenological model that predicts fluorescence lifetimes, i.e., relative quantum yields as a function of temperature, pressure, and O2 concentration is presented. The photophysics of anisole is discussed in comparison with other aromatics.  相似文献   

3.
The effect of high hydrostatic pressure (up to 10.3?GPa) at room temperature on fluorescence lifetime τ for R line (2E→4A2 transition) in ruby Al2O3:V2+ was studied. The performed studies show the linear increase of τ with increasing pressure. At 10.3?GPa, τ is about 1.36 times higher than at ambient pressure. The obtained trend was explained by a model which considered the effect of pressure on τ through an induced change of line position, inter-ionic distance, compressibility, and molecular polarizability. A good agreement between the calculated and experimental values for τ was obtained.  相似文献   

4.
The magnetic susceptibility of Sm3S4 single crystals has been measured between 1.8 K and 300 K. At low temperatures the susceptibility is composed of χSm2+ + 2χSm3+. Near and above 100 K the susceptibility of the Sm3+ ions is quenched due to the increasing valence fluctuation rate.  相似文献   

5.
J. Schuyer 《Molecular physics》2013,111(6):597-599
The quantum yields of naphthalene vapour fluorescence at 225°c and of phenanthrene vapour fluorescence at 365°c excited by the Hg 313 μ line are independent of concentration up to 0·014 and 0·007 moles/l. respectively; this is attributed to fast dissociation relaxation of the excimer at these temperatures.

The fluorescence of naphthacene vapour excited at temperatures of 355–435°c by the group of Hg lines at 365 μ decreases with increasing pressure at pressures below that at which absorption of the incident radiation is virtually complete, and is attributed to a combination of self-quenching and reabsorption of fluorescence. An analysis of the data for the limiting cases of complete and negligible fluorescence reabsorption provides upper and lower limits for self-quenching constant which are consistent with unit collisional quenching efficiency and a lifetime of 5·3 ± 2·2 + 10-9 sec at 355°c.  相似文献   

6.
La0.85−xSmxAg0.15MnO3 (x=0−0.2) ceramics were prepared using the conventional solid-state synthesis method to investigate the effect of Sm3+ substitution on magnetic and electrical transport properties. Magnetic susceptibility versus temperature measurements showed all samples exhibit ferromagnetic to paramagnetic transition with Curie temperature, Tc decreasing from 283 K (x=0) to 164 K (x=0.2) with increasing Sm3+. The observed slope in susceptibility, χ′ versus temperature curves below Tc indicates the possible presence of FM and AFM phases in the metallic region. In addition, a deviation from the Curie-Weiss law above Tc in 1/χ′ versus T curves indicates the existence of a Griffith's phase in the x=0.05−0.2 samples due to the Sm3+ ion substitution. The Griffith temperature, TG was found to decrease from 295 K (x=0.05) to 229 K (x=0.2). Electrical resistivity measurements of the samples in zero field showed transition from metallic behavior to insulating behavior as the temperature was increased. For x=0, two metal-insulator, MI transition peaks were observed at Tp1=282 K and at Tp2=250 K. Both peaks shifted to lower temperatures with the increase in Sm3+. The relative resistivity of the first peak to the second peak decreases with increasing Sm3+ for x>0.05 while at x=0.2 the Tp1 peak was strongly suppressed. Magnetoresistance, MR was observed to weaken with Sm3+ substitution. The metallic region of the ρ(T) curve of the x=0−0.15 samples was fitted to the model of electron-electron and electron-magnon scattering while the insulating region was fitted to the variable range hopping, VRH model. The resistivity behavior indicated that the substitution of Sm3+ weakened the double exchange process and enhanced the Jahn-Teller effect. Our results indicated that the Tp1 peak is strongly related to the double-exchange mechanism while the Tp2 peak is suggested to originate from magnetic inhomogeneity.  相似文献   

7.
Time-resolved fluorescence spectra of gas-phase toluene and naphthalene were investigated upon picosecond laser excitation at 266 nm as a function of temperature (toluene 296–1,025 K, naphthalene 374–1,123 K), pressure (1–10 bar), and bath gas composition (varying concentrations of N2, O2, and CO2) with a temporal resolution of 50 ps. In the investigated temperature range, the fluorescence spectra of both toluene and naphthalene show a significant red-shift, whereas the fluorescence lifetime decreases with increasing temperature, more pronounced for toluene than for naphthalene. Increasing the total pressure of either N2 or CO2 from atmospheric to 10 bar leads to an increase by about 20 % (naphthalene at 373 K) and a decrease by 60 % (toluene at 575 K) in fluorescence lifetimes, respectively. As expected, at atmospheric pressure collisions with O2 shorten the fluorescence lifetime of both toluene and naphthalene significantly, e.g., by a factor of 30 and 90 when changing O2 partial pressure at 373 K from 0 to 0.21 bar, respectively. The fluorescence model of Koban et al. (Appl Phys B 80: 777, 2005) for the dependence of the toluene quantum yield on temperature and O2 partial pressure at atmospheric pressure describes toluene fluorescence lifetimes well within its range of validity. The model is modified to satisfactorily predict effective toluene fluorescence lifetimes in N2 at pressures up to 10 bar. However, it still fails to predict the dependence at simultaneously elevated temperatures and pressures in air as bath gas. Similarly, an empirical model is presented for predicting (relative) fluorescence quantum yields and lifetimes of naphthalene. Although the fitting models have their shortcomings this publication presents a data set of great importance for practical LIF applications, e.g., in-cylinder mixture formation diagnostics in internal combustion engines.  相似文献   

8.
Cobalt ferrite, CoFe2O4, nanoparticles in the size range 2–15 nm have been prepared using a non-aqueous solvothermal method. The magnetic studies indicate a superparamagnetic behavior, showing an increase in the blocking temperatures (ranging from 215 to more than 340 K) with the particle size, D TEM. Fitting M versus H isotherms to the saturation approach law, the anisotropy constant, K, and the saturation magnetization, M S, are obtained. For all the samples, it is observed that decreasing the temperature gives rise to an increase in both magnetic properties. These increases are enhanced at low temperatures (below ~160 K) and they are related to surface effects (disordered magnetic moments at the surface). The fit of the saturation magnetization to the T 2 law gives larger values of the Bloch constant than expected for the bulk, increasing with decreasing the particle size (larger specific surface area). The saturation magnetization shows a linear dependence with the reciprocal particle size, 1/D TEM, and a thickness of 3.7 to 5.1 Å was obtained for the non-magnetic or disordered layer at the surface using the dead layer theory. The hysteresis loops show a complex behavior at low temperatures (T ≤ 160 K), observing a large hysteresis at magnetic fields H > ~1000 Oe compared to smaller ones (H ≤ ~1000 Oe). From the temperature dependence of the ac magnetic susceptibility, it can be concluded that the nanoparticles are in magnetic interaction with large values of the interaction parameter T 0, as deduced by assuming a Vogel–Fulcher dependence of the superparamagnetic relaxation time. Another evidence of the presence of magnetic interactions is the almost nearly constant value below certain temperatures, lower than the blocking temperature T b, observed in the FC magnetization curves.  相似文献   

9.
The thermal conductivity κ (within the range 4–300 K) and electrical conductivity σ (from 80 to 300 K) of polycrystalline Sm3S4 with the lattice parameter a=8.505 Å (with a slight off-stoichiometry toward Sm2S3) are measured. For T>95 K, charge transfer is shown to occur, as in stoichiometric Sm3S4 samples, by the hopping mechanism (σ ~ exp(?ΔE/kT) with ΔE ~ 0.13 eV). At low temperatures [up to the maximum in the lattice thermal conductivity κph(T)], κphT 2.6; in the range 20–50 K, κphT ?1.2; and for T>95 K, where the hopping charge-transfer mechanism sets in, κphT ?0.3 and a noticeable residual thermal resistivity is observed. It is concluded that in compounds with inhomogeneous intermediate rare-earthion valence, to which Sm3S4 belongs, electron hopping from Sm2+ (ion with a larger radius) to Sm3+ (ion with a smaller radius) and back generates local stresses in the crystal lattice which bring about a change in the thermal conductivity scaling of κph from T ?1.2 to T ?0.3 and the formation of an appreciable residual thermal resistivity.  相似文献   

10.
This paper reports on the nonlinear magnetoelectric effect (MEE) in the orthorhombic ferroelectric ferroelastic β′ phase of samarium molybdate Sm2(MoO4)3 observed in magnetic fields up to 20 T and temperatures from 4.4 to 0.43 K. The magnetic-field-induced electric polarization in Sm2(MoO4)3 is an order of magnitude larger than that in isomorphic Gd2(MoO4)3. This provides support for the magnetostriction mechanism proposed by us for the MEE in rare-earth molybdates. The polarization in Sm2(MoO4)3 was found to fall off with time. The relaxation time constant τ increases with decreasing temperature from τ=102 s at T=4.4 K to τ≈103 s at T=0.43 K.  相似文献   

11.
The superconductivity of gold–indium alloys has been investigated using first-principles calculations based on the density functional theory. At ambient pressure, the calculated superconducting transition temperature (T c) is 0.04 μ K in pure gold, but T c dramatically increases by substituting indium atoms for gold atoms. The gold–indium alloy having 12.5 atomic percent indium (Au0.875In0.125) shows T c of 0.1 K, and Au0.75In0.25 marks 1.7 K. The dramatic increase in T c owing to the alloying effect is caused by the enhancement of the electron–phonon coupling. The superconductivity of gold is predicted to be drastically weakened with increasing pressure and virtually disappear at 10 GPa, but it continues up to at least 30 GPa by the inclusion of indium atoms.  相似文献   

12.
准一维反铁磁体CsMnCl3·2D2O中激子的能量转移   总被引:1,自引:0,他引:1       下载免费PDF全文
贾惟义  严懋勋 《物理学报》1983,32(7):867-874
在2—300K温度范围,研究了纯的及掺Mg2+,Ni2+和Co2+的准一维反铁磁体CsMnCl3·2D2O(CMC)中Mn2+离子的4T1激子的能量转移动力学过程,发现在2—10K范围,激子的荧光强度和寿命随温度很快下降,较高浓度的杂质离子将进一步加快荧光的减弱和寿命的缩短。这种现象被归结为与磁相互作用和自旋有序相关联的多声子无辐射跃迁及施主—受主之间的能量转移。在更高的温度,能量转移速率增高,但由于仍然存在的自旋短程有序和Jahn-Teller效应,施主之间的能量迁移受到一定限制,出现非指数衰减过程。各种不同的杂质离子在某种程度上显示出不同的陷落作用和弛豫特性。 关键词:  相似文献   

13.
A detailed structural, magnetic and physics properties of La1?xMnOδ (LMO) nanomanganites were investigated to find out the role of cationic vacancies (La vacancy with Mn3+/Mn4+) in grain size modulation. Crystal structure and phase analysis of all samples were carried out by Rietveld refinement of high-resolution XRD and neutron diffraction data. We report here, the oxygen content in studied LMO compound decreases with increase in La vacancies in parent site and a parasitic Mn3O4 phase has been evolved in the range of 0.9 ≥ La/Mn ≥ 0.7. Para to ferro magnetic transition temperature (TC) of all nanometric samples (La/Mn < 0.9) was found at high temperature side (≥260 K) whereas, the same for bulk one (La/Mn ≥ 0.9) was around 160 K. The enhancement of TC (~70 K) with size reduction is attributed to broadening of bandwidth due to compaction of MnO6 octahedra in system unit cell. In bulk sample, a secondary cluster/spin glassy phase is found below 50 K, whereas the glassy phase has been suppressed in nanoscale. Field-dependent magneto-resistance measurements are also carried out for all samples at different temperatures to get a profound insight of magneto-transport dynamics of the present system.  相似文献   

14.
L. Dai  H. Li  C. Liu  G. Su  S. Shan 《高压研究》2013,33(3):193-202
Electrical conductivities of pyroxenite were measured between frequencies of 10?1 and 106 Hz in a multi-anvil pressure apparatus using different solid buffers (Ni+NiO, Fe+Fe3O4, Fe+FeO and Mo+MoO2) to stabilize the partial pressure of oxygen. The temperature ranged from 1073 to 1423 K (800 to 1200 °C) and the pressure from 1.0 to 4.0 GPa. We observe that: (1) the electrical conductivity (σ) of pyroxenite depends on frequency; (2) σ tends to increase with rising temperature (T), and Log σ and 1/T obey a linear Arrhenius relationship; (3) under control of the buffer Fe+Fe3O4, σ tends to decrease with rising pressure, nevertheless the activation enthalpy tends to increase. For the first time we have obtained values for the activation energy and activation bulk volume of the main charge carriers, which are (1.60±0.07) eV and (0.05±0.03) cm3/mol, respectively; (4) for a given pressure and temperature, σ tends to rise with increased oxygen fugacity, whereas the activation enthalpy and preexponential factor tend to decrease; and (5) the behaviour of the electrical conductivity at high temperature and high pressure can be reasonably interpreted by assuming that small polarons provide the dominant conduction mechanism in the pyroxenite samples.  相似文献   

15.
The high-pressure and high-temperature behaviors of LiF and NaF have been studied up to 37 GPa and 1000 K. No phase transformations have been observed for LiF up to the maximum pressure reached. The B1 to B2 transition of NaF at room temperature was observed at ~28 GPa, this transition pressure decreases with temperature. Unit-cell volumes of LiF and NaF B1 phase measured at various pressures and temperatures were fitted using a P–V–T Birch–Murnaghan equation of state. For LiF, the determined parameters are: α0 = 1.05 (3)×10?4 K?1, dK/dT = ?0.025 (2) GPa/K, V 0 = 65.7 (1) Å3, K 0 = 73 (2) GPa, and K′ = 3.9 (2). For NaF, α0 = 1.34 (4)×10?4 K?1, dK/dT = ?0.020 (1) GPa/K, V 0 = 100.2 (2) Å3, K 0 = 46 (1) GPa, and K′ = 4.5 (1).  相似文献   

16.
Abstract

In the present investigation the excitation and fluorescence spectra and lifetimes of Mn2+ ions in calcium chloride, for various manganese concentrations and sample temperatures have been studied for the first time. The fluorescence spectrum consists of an asymmetric broad band, which upon lowering the sample temperature, shifts its maximum from 580 nm at 300 K to 596 nm at 11 K. This luminescence band was associated with the 4Tlg(4G)→6Alg(6S) spin-forbidden transition in the manganese ions occupying Ca-sites in the lattice of CaCl2. The excitation spectrum of the Mn2+ fluorescence revealed the features of manganese ions in octahedral coordination and consisted of nine excitation peaks which were associated with Mn2+-crystal-field-sensitive transitions. A crystal field analysis of the wavelength positions of these transitions by means of the model developed by Curie et al. allowed us to determine the magnitude of the cubic field splitting 10Dq, the reduced Racah parameter B', the Koide-Pryce covalency parameter ε and the spin transfer coefficients f [sgrave] and f σ. From the measurement of the temperature dependence of the Mn2+ fluorescence lifetime, we have also obtained information about the different mechanisms which are involved in the relaxation of excited Mn2+ ions in this host crystal in the temperature range (11–300 K).  相似文献   

17.
O. Grasset 《高压研究》2013,33(3-4):139-157
Abstract

The pressure range [&1 GPa] and the temperature range [250–300 K] are commonly used in many science fields like biology, agro-chemistry, pharmacology, or geology. In this paper, the calibration of the ruby R lines of fluorescence is performed in these pressure and temperature ranges, using the melting curve of pure water. The linear shifts of ruby peaks are equal to ?0.140cm?1/K and ?0.768cm?1/kbar with R1, and to ?0.137cm?1/K and ?0.779 cm?1/kbar with R2. The accuracy of pressure measurements can be as good as ± 10MPa if the temperature is known with ±0.5 K. Such a precision is achieved if: (1) the position of each peak is determined using an inversion method; (2) daily shifts of the spectrometer are corrected before each acquisition; (3) peak positions of each ruby are known at ambient pressure and temperature.  相似文献   

18.
The rotational (TR) and vibrational (Tv) temperatures of N2 molecules were measured in a high‐pressure cylindrical dielectric barrier discharge (C‐DBD) source in Ne with trace amounts (0.02 %) of N2 and dry air excited by radio‐frequency (rf) power. Both TR and Tv of the N2 molecules in the C 3Πu state were determined from an emission spectroscopic analysis the 2nd positive system (C 3Πu → B3Πg). Gas temperatures were inferred from the measured rotational temperatures. As a function of pressure, the rotational temperature is essentially constant at about 360 K in the range from 200 Torr to 600 Torr (at 30W rf power) and increases slightly with increasing rf power at constant pressure. As one would expect, vibrational temperature measurements revealed significantly higher temperatures. The vibrational temperature decreases with pressure from 3030 K at 200 Torr to 2270 K at 600 Torr (at 30 W rf power). As a function of rf power, the vibrational temperature increases from 2520 K at 20 W to 2940 K at 60 W (at 400 Torr). Both TR and Tv also show a dependence on the excitation frequency at the two frequencies that we studied, 400 kHz and 13.56 MHz. Adding trace amounts of air instead of N2 to the Ne in the discharge resulted in higher TR and Tv values and in a different pressure dependence of the rotational and vibrational temperatures. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The time dependence of Sm2+ fluorescence in orthorhombic BaCl2 was investigated between 77 and 300 K. The thermal quenching mechanism of the 4f-4f emissions of Sm2+ was examined. The position of the lowest level of Sm2+ 4f55d states was calculated from the temperature dependence of 5D1 lifetime by the two-step quenching model and was estimated in good approximation from the emission and excitation peaks by the electron-phonon coupling theory. A growing process of 5D0-7F0 emission and a double-decay process of 5d-4f emission were observed in the time-resolved fluorescence. They show clearly the population transfer among the Sm2+ excited states via thermal transition.  相似文献   

20.
The Effect of pressure on the superconducting transition temperature of Yb doped Ce0.6Yb0.4FeAsO0.9F0.1 has been investigated for the first time using resistivity and magnetization studies. Increase in chemical pressure by substitution of smaller Yb3+ ions in place of Ce3+ ions results in a significant enhancement of Tc from 38 K (Yb free) to 47 K (40% Yb). Enhancement in Tc with external pressure has been observed for this compound up to a maximum value of Tc = 48.7 K at 1 GPa, beyond which Tc starts decreasing monotonously. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号