首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anionic polymerization of β-methoxypropionaldehyde (MPA) was carried out in tetrahydrofuran (THF) by using benzophenone–monolithium complex as an initiator. An equilibrium between polymerization and depolymerization was observed at a temperature range of ?90 to ?70°C. From the temperature dependence of the equilibrium monomer concentration, thermodynamic parameters for the polymerization of MPA in THF were evaluated as follows: ΔHss = ?4.8 ± 0.2 kcal/mole, ΔHSS = ?22.4 ± 1.3 cal/mole-deg, and (Tc)ss = ?59°C. The thermodynamic change upon the conversion of liquid monomer to condensed polymer was computed from both the partial mixing energy of MPA with THF and the linear relationship between the equilibrium volume fraction of MPA monomer and that of the resulting polymer: ΔH1c = ?4.7 ± 0.2 kcal/mole, ΔS1c = ?19.5 ± 1.3 cal/mole-deg, and (Tc)1c = ?35°C.  相似文献   

2.
Anionic polymerization of p-diisopropenylbenene was found to be an equilibrium polymerization not only with respect to the monomer but also with respect to the pendent double bond. The polymerization was studied from kinetic as well as from the thermodynamic point of view, especially to ascertain the reactivity of the pendent double bond as compared with the double bond of monomeric analog. It was shown that the crosslinking rate constant of the pendent double bond is lower by about three to four orders than the propagation rate constant of the monomeric analog. The rate of cyclization was also very slow. From the equilibrium, the heat and entropy of polymerization of the monomer were determined as ΔHss = ?5.8 kcal/mole and ΔSss = ?18.0 cal/deg mole, respectively, and those of the pendent double bond as ΔHss = ?6.3 kcal/mole and ΔSss = ?27.8 cal/deg mole. When compared with the polymerization of α-methylstyrene, the low thermodynamic polymerizability of the pendent double bond is attributed to the low heat of polymerization, which may arise from the large steric hindrance of neighboring groups. The effect is much smaller for the equilibrium than for the rate of polymerization, however.  相似文献   

3.
This article describes the equilibrium cyclotrimerization of β-methoxypropionaldehyde (MPA), 4,7-dioxaoctanal (DOA), and n-octanal (OA) initiated by boron trifluoride etherate in toluene at a temperature range of ?10 to 25°C. The enthalpy and entropy changes corresponding to the conversion of 1 mole of the monomers to 1/3 mole of their cyclic trimers in toluene solution, at the initial monomer concentration of 1 mole/liter, were evaluated as follows: ΔHss = ?5.9 ± 0.3 kcal/mole and ΔSss = ?19.1 ± 1.3 cal/mole deg for the MPA system; ΔHss = ?7.4 ± 0.4 kcal/mole and ΔSss = ?24.1 ± 1.7 cal/mole deg for the DOA system; ΔHss = ?6.1 ± 0.4 kcal/mole and ΔSss = ?21.2 ± 1.5 cal/mole deg for the OA system. The comparison of these values with those in their polymerization indicates that the cyclotrimerization of aldehydes is thermodynamically of greater advantage than their polymerization. The effects of long and polar substituents are discussed from the view-point of the intermolecular interactions by the polar groups in monomers and their cyclic trimers.  相似文献   

4.
The anionic polymerization of norbornene trisulfide initiated with sodium thiophenoxide (sodium cation solvated with dibenzo-18-crown-6 ether) was studied. Polymers with high molecular weights were obtained (M n up to 105, osmometrically). Molecular weights calculated for living polymerization conditions (i.e., one molecule of initiator yields one macromolecule) agree well with M n measured by osmometry. 1H-NMR, 13C-{1H}-NMR, and Raman spectra of the polymer are given. Thermodynamics of polymerization in toluene solvent is described. Enthalpy ΔHss = ?(1.39 ± 0.17) kcal mol?1 and entropy ΔSss = ?(7.52 ± 0.55) cal mol?1 deg?1 coefficients of polymerization were evaluated from the temperature dependence of the equilibrium monomer concentration determined dilatometrically.  相似文献   

5.
β-Methoxycarbonylpropionaldehyde (MCPA) was polymerized in tetrahydrofuran (THF) with benzophenone–monolithium complex as the initiator. An equilibrium between the monomer and its polymer was observed in the temperature range of ?96 to ?78°C. MCPA had lower polymerizability than ether-substituted aldehydes and their corresponding unsubstituted aliphatic aldehydes in the temperature range. The thermodynamic parameters were evaluated from the temperature dependence of the equilibrium monomer concentration: ΔHss = ?4.3 ± 0.2 kcal/mole, ΔSss = ?21.9 ± 1.0 cal/mole deg, Tcss = ?76°C. Not only an ether substitution but also an ester substitution in propionaldehyde caused the decrease in the absolute values of the thermodynamic parameters for the aldehyde polymerization. These substituent effects may have been the result mainly of the strong intermolecular dipole–dipole interactions of polar groups in monomer states.  相似文献   

6.
The free-radical copolymerizability of 3(2-methyl)6-methylpyridazinone (I) with styrene (St)(M1) has been reinvestigated at varying reaction conditions (solvent, monomer concentration, and reaction temperature). The copolymerization rates in protic solvents were not proportional to the monomer concentration. The overall activation energies in protic solvents were much affected by the monomer concentration. The results might be ascribed to the viscosity effect on the termination reaction, because the protic solvent was found to interact with I through hydrogen bonding to form a 1:1 complex which changed the viscosity of the reaction mixture. The monomer reactivity ratios were strongly affected by the reaction conditions. This might be explained by taking account of the solvation to the carbonyl group of I in the transition state, because clear relationships were not obtained by plots of log 1/r1 against the values of both vC?O and vC?C stretching frequencies of I, but the values of both ΔΔH?(?ΔH?11 ? ΔH?12) and ΔΔS?(?ΔS?11 ? ΔS?12) decreased linearly with a decrease of the monomer concentration in order of benzene ~ dimethylformamide < ethanol < phenol < acetic acid systems.  相似文献   

7.
The relative reactivities of α-monosubstituted cyclic ethers having rings of three to six members toward a cation were estimated from their copolymerizations with 3,3-bis-(chloromethyl)oxetane (M1) catalyzed by boron trifluoride etherate in methylene chloride at 0°C. It was found that the reactivity of these cyclic ethers was dominated by both the ring strain and the basicity. The following empirical equation was derived to represent the relative reactivity of cyclic ethers: log (1/r1) = ?0.086ΔRS ? 0.31ΔB + 0.57, where ΔRS and ΔB are constants, characteristic of ring strain and basicity of the cyclic ethers and determined from the differences in free energy of polymerization of the corresponding cycloalkanes and in basicity between M1 and M2 monomers, respectively. A good linear correlation was observed between the reactivities calculated from this equation and those obtained from the experiments.  相似文献   

8.
The equilibrium anionic polymerization of α-methylstyrene in p-dioxane, with potassium as initiator, has been investigated at 5, 15, 25, and 40°C by using high-vacuum techniques. The comparison of these results with those obtained previously for the equilibrium polymerization of α-methylstyrene in tetrahydrofuran revealed that, although the values of ΔG1c, the free-energy change upon the polymerization of 1 mole of liquid monomer to 1 bases-mole of liquid amorphous polymer of infinite chain length, are the same for both systems, there is a distinct effect of the solvent. This effect is reflected in the value of monomer equilibrium concentration and its variation with polymer concentration and is explained in terms of a solvent–monomer and solvent–polymer interaction parameter.  相似文献   

9.
The catalytic activity of the complexes prepared by the reaction of Grignard reagents with ketones, esters, and an epoxide as polymerization catalysts of methyl and ethyl α-chloroacrylates was investigated. The modifiers which gave isotactic polymers were α,β-unsaturated ketones such as benzalacetophenone, benzalacetone, dibenzalacetone, mesityl oxide, and methyl vinyl ketone, and α,β-unsaturated esters such as ethyl cinnamate, ethyl crotonate, and methyl acrylate. Catalysts with butyl ethyl ketone, propiophenone, and propylene oxide as modifiers produced atactic polymers but no isotactic polymers. It was revealed that the complex catalysts having a structure ? C?C? O? MgX (X is halogen) gave isotactic polymers. The mechanism of isotactic polymerization was discussed. In addition, for radical polymerization of ethyl α-chloroacrylate, enthalpy and entropy differences between isotactic and syndiotactic additions were calculated to give ΔHi* ? ΔHs* = 910 cal/mole and ΔSi* ? ΔSs* = 0.82 eu.  相似文献   

10.
The equilibrium between fluoral in dichloromethane solution and live condensed liquid polyfluoral has been investigated between 22 and 43°C. Equilibrium monomer concentrations gave: ΔHac°(298 K) = -50-8 ± 2·3 kJ mol?1 and ΔSsc° (298 K) = -142·7 ± 7·4 J K-1 mol-1. With the aid of calibration and monomer vaporization data, thermodynamic values for the polymerization of liquid monomer to liquid polymer were also calculated: ΔHtc° (298 K) = -47 ± 3 kJ mol-1 and ΔS1e° (298 K) = -97 ± 10 J K-1 mol-1.  相似文献   

11.
Cationic polymerization of a seven-membered cyclic sulfite ( 7CS ) was carried out with methyl trifluoromethanesulfonate as a catalyst in chlorobenzene. The final conversions of 7CS were 22, 41, 52, and 60% in the polymerizations at 25°C with the initial monomer concentrations of 3, 4, 5, and 6M, respectively. The calculated monomer concentration at equilibrium was evaluated as 2.4M in any case. The conversion of 7CS decreased as the polymerization temperature rose. These results support the fact that this polymerization is an equilibrium one. ΔH0 and ΔS0 in the polymerization were evaliuated as −0.765 kcal/mol and −4.18 cal/mol by Dainton's equation, respectively. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3235–3240, 1997  相似文献   

12.
The diad tacticity of poly(isopropyl acrylate) was measured from the β-proton absorptions of poly(isopropyl acrylate-α,β-d2) obtained with a 100 MHz NMR spectrometer, and temperature dependence of the tacticity of the polymers obtained by radical polymerization was determined. Enthalpy and entropy differences between isotactic and syndiotactic addition for poly(isopropyl acrylate) were calculated to give the following values: Δ(ΔS) = 0.7 eu; Δ(ΔH) = 0.51 kcal/mole. In the hydrolysis of poly(isopropyl acrylate-α,β-d2), it was found that the rate of hydrolysis of poly(isopropyl acrylate) was dependent on the molecular weight rather than on the tacticity. As for the rate of racemization during hydrolysis, the rate for syndiotactic polymer was much faster than that for the isotactic polymer. The exchange reaction of deuterium at α-position with hydrogen occurred in all the polymers during hydrolysis reaction.  相似文献   

13.
To study the possibility of living cationic polymerization of vinyl ethers with a urethane group, 4‐vinyloxybutyl n‐butylcarbamate ( 1 ) and 4‐vinyloxybutyl phenylcarbamate ( 2 ) were polymerized with the hydrogen chloride/zinc chloride initiating system in methylene chloride solvent at ?30 °C ([monomer]0 = 0.30 M, [HCl]0/[ZnCl2]0 = 5.0/2.0 mM). The polymerization of 1 was very slow and gave only low‐molecular‐weight polymers with a number‐average molecular weight (Mn) of about 2000 even at 100% monomer conversion. The structural analysis of the products showed occurrence of chain‐transfer reactions because of the urethane group of monomer 1 . In contrast, the polymerization of vinyl ether 2 proceeded much faster than 1 and led to high‐molecular‐weight polymers with narrow molecular weight distributions (MWDs ≤ ~1.2) in quantitative yield. The Mn's of the product polymers increased in direct proportion to monomer conversion and continued to increase linearly after sequential addition of a fresh monomer feed to the almost completely polymerized reaction mixture, whereas the MWDs of the polymers remained narrow. These results indicated the formation of living polymer from vinyl ether 2 . The difference of living nature between monomers 1 and 2 was attributable to the difference of the electron‐withdrawing power of the carbamate substituents, namely, n‐butyl for 1 versus phenyl for 2 , of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2960–2972, 2004  相似文献   

14.
The radical polymerizations and copolymerizations of dimethylstannyl dimethacrylate (DSM) and trimethylstannyl methacrylate (TSM) in dimethylformamide (DMF) were studied. These monomers did not polymerize thermally, but easily underwent polymerization in the presence of α,α′-azobisisobutyronitrile and on irradiation with ultraviolet light. The polymer obtained from TSM was soluble in DMF and methanol, but that from DSM was insoluble in any organic solvents; this polymer probably consists of a network structure. These polymers were converted to poly(methyl methacrylate) (PMMA) by means of acid hydrolysis and then methylation with diazomethane. The content of syndiotactic triad was determined from infrared spectra of PMMA derived from the polymers of DSM and TSM. It was noted that the content of syndiotactic triad was greater in the radical polymerization of TSM than those of DSM at every temperature investigated. The differences in the activation enthalpy (ΔΔH?) and in the activation entropy (ΔΔS?) between isotactic and syndiotactic additions were determined as follows: for DSM, ΔΔH? = ~0 cal/mole, ΔΔS? = ?0.856 eu; for TSM, ΔΔH? = 229 cal/mole, ΔΔ = ?1.09 eu. From the radical copolymerizations of DSM and TSM with styrene at 60°C, the copolymerization parameters, Q and e, were evaluated as follows: for DSM, Q = 1.36, e = 0.41; for TSM, Q = 0.45, e = ?0.37. These results were compared with the reported effects of stannic chloride and zinc chloride on the radical polymerization of methyl methacrylate.  相似文献   

15.
Methyl methacrylate (MMA) was polymerized by radical initiation at 0, 25, 50, 75 and 100°C in DMF in the presence of preformed isotactic PMMA (iMA) or preformed syndiotactic PMMA (sMA) with different M?v and also without preformed PMMA (“blank” polymerizations). From the tacticities of the formed polymers it is concluded that blank polymerization does not conform to simple Bernoulli statistics, but follows at least first-order Markov statistics. The formation of long syndiotactic sequences in the presence of iMA and long isotactic sequences in the presence of sMA denotes still higher-order Markov statistics. The stereoregulating action is improved by higher M?v of the preformed polymer (matrix) and lower reaction temperature. These influences can be explained by assuming an equilibrium between polymer growth on the matrix and in the “free” solution. For polymerizations in the presence of iMA or sMA below 300°K, the differences in activation enthalpies (ΔHs/i? – ΔHi/s?) are practically equal to that for the blank polymerization, ca. 900 cal/mole, whereas the differences in activation entropies (ΔSs/i? – ΔSi/s?) differ considerably. (ΔSs/i? – ΔSi/s?) values are highly negative in the presence of iMA and highly positive in the presence of sMA. From these results it is concluded that the isotactic and syndiotactic polymer matrices exert a steric influence on the monomer addition process, thus promoting so-called stereospecific replica polymerization.  相似文献   

16.
Truly living polymerization of isobutylene (IB) has been achieved for the first time by the use of new initiating systems comprising organic acetate-BCl3 complexes under conventional laboratory conditions in various solvents from ?10 to ?50°C. The overall rates of polymerization are very high, which necessitated the development of the incremental monomer addition (IMA) technique to demonstrate living systems. The living nature of the polymerizations was demonstrated by linear M n versus grams polyisobutylene (PIB) formed plots starting at the origin and horizontal number of polymer molecules formed versus amount of polymer formed plots. DP n obeys [IB]/[CH3COORt · BCl3]. Molecular weight distributions (MWD) are very narrow in homogeneous systems (M w/M n = 1.2–1.3) whereas somewhat broader values are obtained when the polymer precipitates out of solution (M w/M n = 1.4–3.0). The MWDs tend to narrow with increasing molecular weights, i.e., with the accumulation of precipitated polymer in the reactor. Traces of moisture do not affect the outcome of living polymerizations. In the presence of monomer both first and second order chain transfer to monomer are avoided even at ?10°C. The diagnosis of first and second order chain transfer has been accomplished, and the first order process seems to dominate. Forced termination can be effected either by thermally decomposing the propagating complexes or by nucleophiles. In either case the end groups will be tertiary chlorides. The living polymerization of isobutylene initiated by ester. BCl3 complexes most likely proceeds by a two-component group transfer polymerization.  相似文献   

17.
Kinetic activation parameters and thermodynamic functions describing the reversible anionic polymerization of 2-methoxy-2-oxo-1,3,2-dioxaphosphorinane (1,3-propylene methyl phosphate) were determined. Enthalpy and entropy of the anionic propagation ? depropagation equilibrium were found to be close to those found previously by the present authors for the cationic polymerization, while the activation parameters of propagation and depropagation differ substantially for both processes and reflect the differences in the involved mechanisms. Thus, data for anionic polymerization (and cationic polymerization in parentheses) are: ΔH1s° = ?0.7 kcal/mole (?1.1); ΔS1s° = ?2.8 cal/mole-deg (?5.4); ΔHp? = 26.7 kcal/mole, and ΔSp? = ?6.1 cal/mole-deg. The polymers obtained have low degrees of polymerization (DP n ≤ 10) because of the extensive chain transfer, leaving cyclic end groups in macromolecules. The presence, structure and concentration of the end groups have been determined by 1H-, 31P-, and 13C-NMR spectra.  相似文献   

18.
A tridentate ligand, BPIEP: 2,6‐bis[1‐(2,6‐diisopropyl phenylimino) ethyl] pyridine, having central pyridine unit and two peripheral imine coordination sites was effectively employed in controlled/“living” radical polymerization of MMA at 90°C in toluene as solvent, CuIBr as catalyst, and ethyl‐2‐bromoisobutyrate (EBiB) as initiator resulting in well‐defined polymers with polydispersities Mw/Mn ≤ 1.23. The rate of polymerization follows first‐order kinetics, kapp = 3.4 × 10?5 s?1, indicating the presence of low radical concentration ([P*] ≤ 10?8) throughout the reaction. The polymerization rate attains a maximum at a ligand‐to‐metal ratio of 2:1 in toluene at 90°C. The solvent concentration (v/v, with respect to monomer) has a significant effect on the polymerization kinetics. The polymerization is faster in polar solvents like, diphenylether, and anisole, as compared to toluene. Increasing the monomer concentration in toluene resulted in a better control of polymerization. The molecular weights (Mn,SEC) increased linearly with conversion and were found to be higher than predicted molecular (Mn,Cal). However, the polydispersity remained narrow, i.e., ≤1.23. The initiator efficiency at lower monomer concentration approaches a value of 0.7 in 110 min as compared to 0.5 in 330 min at higher monomer concentration. The aging of the copper salt complexed with BPIEP had a beneficial effect and resulted in polymers with narrow polydispersitities and higher conversion. PMMA obtained at room temperature in toluene (33%, v/v) gave PDI of 1.22 (Mn = 8500) in 48 h whereas, at 50°C the PDI is 1.18 (Mn = 10,300), which is achieved in 23 h. The plot of lnkapp versus 1/T gave an apparent activation energy of polymerization as (ΔEapp) 58.29 KJ/mol and enthalpy of equilibrium (ΔH0eq) to 28.8 KJ/mol. Reverse ATRP of MMA was successfully performed using AIBN in bulk as well as solution. The controlled nature of the polymerization reaction was established through kinetic studies and chain extension experiments. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4996–5008, 2005  相似文献   

19.
The equilibrium anionic polymerization of p-isopropyl-α-methylstyrene in tetrahydrofuran with potassium and sodium-naphthalene complex as initiators has been investigated in the temperature range of -20 to +20° C by use of high-vacuum techniques. The comparison of these results with those obtained previously for the equilibrium polymerization of α-methyl-styrene revealed that, because of the p- substituted bulkier isopropyl group in the monomer, the values of δGc, the free-energy change upon the polymerization of 1 mole of liquid monomer to 1 base-mole of liquid amorphous polymer of infinite chain length, are slightly higher in the present studies. The values of ΔHc and ΔS ccomputed from the plots of ΔGc /RT versus 1/T yielded values which are lower than that for the α-methylstyrene-THF system. The effect of p-substitution is also observed in the higher values of the monomer equilibrium concentration [M] and lower values of β[β = xms-xsp (Vm/Vs)].

where xms and x are monomer-solvent and solvent-polymer interaction parameters, respectively, and Vm /Vs is molar volume ratio of monomer to solvent. The values of xms for the p-isopropyl-α-methylstyrene-THF system increase regularly with increasing temperature, whereas in α-methylstyrene-THF system the increase in xms was not that marked  相似文献   


20.
The formation of 1 : 2 titanium(III) complex with chromotropic acid (4, 5-dihydroxy-2, 7-naphthalene-disulfonic acid) was observed by spectrophotometric measurements at various ionic strengths. An expression, [Ti(III)]/D=1/Δ? + αH2+/KΔ?[H2R2?]2, was derived for the determination of the formation constant, K=7.2×102 liter2 mol?2 for the Ti(III).(HR)2 ion in the pH range of 1.3–1.8 at constant ionic strength, I=0.2 M, at 25°C. The thermodynamic data for the reaction, Ti(III)+2H3R2?=Ti(III) (HR)2+2H+, were calculated to be ΔG° = ?16 kJ mol?1 ΔH° = 18 kJ mol?1, ΔS° = 110 JK?1 mol?1, at 25°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号