首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Recently, an optical attenuator has been important in fiber optic communication systems, because a transmission power in fiber has become higher due to a channel increment in wavelength division multiplexing transmission. A photonic crystal fiber (PCF) optical attenuator is fabricated by air hole diameter reduction in a part of PCF in which radiations are caused in the air hole diameter reduced part of PCF. A PCF optical attenuator has a high power resistance feature due to its radiation-induced operation of optical attenuation. In this paper, we proposed a variable PCF optical attenuator in which a bend was applied to the air hole diameter reduced part in PCF optical attenuator that was fabricated by CO2 laser irradiation. In PCF optical attenuator fabrication, the attenuation was adjusted by the reduced air hole diameter with laser irradiation time control. It was demonstrated that 10.6–13.5 dB of variable attenuation was obtained at 1550 nm-wavelength with 0°–90° bending angle applied to the air hole diameter reduced part in PCF optical attenuator.  相似文献   

2.
A fiber optic sensor for determining the thickness of a transparent plate (1–2.5 mm) is described based on a fiber optic displacement sensor. The sensor characteristics are found to vary with the change in the thickness of a plate. A theoretical model is proposed and validated with experimental results. The behavior of the sensor is evaluated and analyzed in terms of the numerical aperture and diameter of the fiber.  相似文献   

3.
应用于拖曳细线阵的光纤水听器研究   总被引:2,自引:0,他引:2  
运朝青  罗洪  胡正良  胡永明 《光学学报》2012,32(12):1206004
研制了一种直径为13 mm的空气腔推挽式双臂对称补偿结构的光纤水听器,介绍了该光纤水听器的工作原理,优化设计了光纤水听器结构。在小直径情况下,保证了较高的声压灵敏度,同时获得了较低的加速度灵敏度。实验测得在80~2500 Hz频段内,该光纤水听器的平均声压灵敏度为-142.5 dB,灵敏度的起伏小于±0.8 dB,加速度灵敏度小于-20 dB。实验结果表明,研制的空气腔推挽式双臂对称补偿结构的光纤水听器,能很好地满足拖曳细线阵的使用要求。  相似文献   

4.
ABSTRACT

A new opposed type double-stage large volume cell has been developed to compress large volume samples to more than 100?GPa (Mbar) pressure. A pair of second-stage diamond anvils is introduced into the first-stage Paris–Edinburgh press. The double-stage large volume cell allows the generation of ultrahigh pressures using a large culet diameter of the second-stage diamond anvils (diameters of 0.5–1.2?mm). Pressure generation up to 131?GPa has been achieved by using the culet diameter of 0.5?mm. Sample volume of the double-stage large volume cell can be more than ~100 times larger than that of conventional Mbar experiment using a diamond anvil cell. The double-stage large volume cell has a large opening in the horizontal plane for X-ray measurements, which is particularly suited for the multi-angle energy dispersive X-ray diffraction measurement, thus opening a new way of in situ structural determinations of amorphous materials at Mbar pressures.  相似文献   

5.
An innovative spectroscopic system based on an external cavity quantum cascade laser (EC-QCL) coupled with a mid-infrared (mid-IR) fiber and quartz enhanced photoacoustic spectroscopy (QEPAS) is described. SF6 has been selected as a target gas in demonstration of the system for trace gas sensing. Single mode laser delivery through the prongs of the quartz tuning fork has been obtained employing a hollow waveguide fiber with inner silver–silver iodine (Ag–AgI) coatings and internal core diameter of 300 μm. A detailed design and realization of the QCL fiber coupling and output collimator system allowed almost practically all (99.4 %) of the laser beam to be transmitted through the spectrophone module. The achieved sensitivity of the system is 50 parts per trillion in 1 s, corresponding to a record for QEPAS normalized noise-equivalent absorption of 2.7 × 10?10 W cm?1 Hz?1/2.  相似文献   

6.
In the present study, high pressure synthesis up to 10 GPa was done using a small cubic anvil apparatus (W45×D52×H92 cm3, load capacity of 1.80 MN) with a multi-anvil 6-6 system. Its performance was demonstrated by synthesizing a ferromagnetic perovskite oxide, CaCu3Fe4O12, at pressure–temperature conditions of 10 GPa and 1400 K. The synthesized CaCu3Fe4O12 perovskite was ~1 mm in diameter and ~2 mm in height and its size was large enough for performing magnetic susceptibility measurements at 5–300 K using a superconducting quantum interference device magnetometer and phase identification by X-ray diffraction. The experimental system developed in the present study has many advantages when used in high pressure synthesis experiments, and the technical development of a small cubic anvil apparatus will greatly contribute to the advancement of high pressure synthesis of novel materials.  相似文献   

7.
We describe a new device, based on a V7 Paris–Edinburgh press, for torsional testing of material at pressures up to 7 GPa (extendable to 15 GPa). Samples are deformed using a simple shear geometry between opposed anvils by rotating the lower anvil, via a rotational actuator, with respect to an upper, stationary, anvil. Use of conical anvil profiles greatly increases sample dimensions more than other high-pressure torsional apparatus did. Samples of polycrystalline Zr (2 mm thick, 3.5 mm diameter) have been sheared at strains exceeding γ ~1.5 at constant strain rate and at pressures from 1.8 to 5 GPa, and textural development has been studied by electron microscopy. Use of amorphous-boron-epoxy gaskets means that nearly simple shear of samples can be routinely achieved. This apparatus allows study of the plastic and anelastic behaviour of materials under high pressure, and is particularly suited for performing in situ investigations using synchrotron or neutron radiation.  相似文献   

8.
New diamond anvils with conical support are introduced. Compared to conventional anvils the new design offers superior alignment stability, larger aperture, and reduced cost owing to significantly smaller anvil diameters. Except for table and culet, all surfaces are precision ground on a lathe, which lowers cost compared to faceted anvils. The conical design allows for steel supports, which are significantly easier and cheaper to manufacture than tungsten carbide supports. Conical support also prevents seat damage upon diamond failure. An additional new feature of the anvils is the roughened outer portion of the culet, which increases friction between the anvils and the gasket. This increases the height to diameter ratio of the pressure cell and prevents bonding between gasket and diamond, which causes ring cracks during pressure release. This technique replaces complicated diamond coating procedures. The anvils have been extensively tested for culets ranging from 0.1 to 1 mm diameter up to megabar pressures. A new anvil shape with cup-shaped culets to further increase the cell volume and gasket stability is also introduced.  相似文献   

9.
The influences of detection device geometry and fiber optic parameters on near infrared spectroscopy measurements were assessed using stone fruit models based on Monte Carlo simulation. The stone fruit was modeled as concentric spherical layered tissues including the skin, the flesh and the core. The choices of the detection angle, the diameter of the detection fiber, the numerical aperture, and the height of the probe were discussed. Receiving diffuse reflectance signals at detection angles in the range of 35°–50° and normalizing the detection signals by the collection area and the solid acceptance angle prior to use are suggested. Fiber probes with diameters D = 0.06 cm or 0.1 cm, NA = 0.20 or 0.30, and height h ≤ 0.8 cm are preferred. The probe deflection angle should be limited to within ±5° to guarantee measurement accuracy.  相似文献   

10.
The present study investigates the effects of the orifice nozzle number and the inlet pressure experimentally on the cooling performance of the counter flow-type vortex tube. The energy generation has been conducted using a stream-tek generator (model GNMD-KIT) with different numbers of nozzles (2, 3, and 6), an aspect ratio of 1:6, and an inner diameter of 7.5 mm. In the experiments, for each of the orifices, inlet pressures have been adjusted from 200–600 kPa. The energy separation investigated here focuses on the cold temperature difference and coefficient of performance for cooling. The experimental results concluded in this article prove that the greatest effect of nozzle number is for three nozzles, and hence, that nozzle number could affect the energy separation efficiently. A comparison of the present experiments with other published works has been conducted. An analytical study of the characteristics equation has been carried out to evaluate the best correlation of the ratio of cold temperature difference to the inlet temperature as a function of pressure, cold mass fraction, and nozzle number.  相似文献   

11.
This work demonstrates a multifiber optical catheter with bending control of the distal end, whose main use is to collect Raman signal for biospectroscopy. Also, a method for fiber background subtraction is presented, allowing removal of fiber emission peaks from gross Raman spectrum. The fiber optic catheter with seven fiber optics wrapped up in a resin and a biocompatible flexible teflon tube has been modified to incorporate a mechanical device with gauntlet, which allows bending of the distal extremity to access a desired location obeying the anatomy of the organ. The mechanical device (gauntlet) was built halfway from the catheter proximal excitation tip, allowing the bending of the distal end of about 38 mm diameter. Dispersive Raman spectra at 785 nm excitation wavelength from samples were measured without and with bending (from 120 mm decreasing to 14 mm) of the distal end of the catheter. An optical catheter without the gauntlet was used as a reference. Results demonstrated that both catheters (with bending mechanism and standard one) had about the same Raman signal when the device was bent semicircularly to 38 mm diameter (bending limit for the mechanism), with negligible implication to the Raman signal-to-noise relation (SNR) from sample. When both catheters were bent in a full turn, the Raman signal decreased to about 40% when bending reached 14 mm diameter, mainly due to losses introduced by changes in the fiber total internal reflection. The background removal was efficient, with minimum residual from fiber peaks. This optical catherer could be very useful in laser diagnosis and clinical applications, introducing a way to control the fiber tip position and angle on the tissue or organ. Published in Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 1, pp. 97–102, January–February, 2007.  相似文献   

12.
The applicability of fibre-reinforced polymers for fabrication of high pressure cells was assessed using finite element analysis and experimental testing. Performance and failure modes for the key components of the cell working in tension and in compression were evaluated and the ways for optimising the designs were established. These models were used in construction of a miniature fully non-metallic diamond anvil cell for magnetic ac susceptibility measurements in a magnetic property measurement system. The cell is approximately 14 mm long, 8.5 mm in diameter and was demonstrated to reach a pressure of 5.6 GPa. AC susceptibility data collected on Dy2O3 demonstrate the performance of the cell in magnetic property measurements and confirm that there is no screening of the sample by the environment which typically accompanies the use of conventional metallic high pressure cells in oscillating magnetic fields.  相似文献   

13.
Materials consisting of nanometer-sized magnetic particles are currently the subject of intensive research activities. Especially, much attention has been paid to their promising features for microwave magnetic properties. Well dispersed Fe3O4 nanoparticles of 30 nm have been synthesized by oxidization method with NaNO2, and the microwave magnetic properties of the composites have been studied. The real and imaginary part of relative permittivity remained low and nearly constant in the region of 0.1–18 GHz, respectively. As a result, the resin composites having a thickness of 2.0–3.2 mm, and containing 20 vol% Fe3O4 in the form of nanoparticles with an average diameter of 30 nm, exhibited excellent electromagnetic wave absorption properties in the frequency range of 4.5–12.0 GHz.  相似文献   

14.
A novel multipath Mach–Zehnder interferometer (m-MZI) is proposed and experimentally demonstrated, which is fabricated by fusion splicing a segment of all-solid multi-core fiber (MCF) between two sections of single mode fiber-28 with a well-controlled lateral offset at the splice points. Beam propagation method-based simulation results demonstrated light passing throw MCF from multiple paths. Experiments with different lengths of MCF were implemented to investigate our proposed m-MZI’s response to temperature and strain. Compared with previously reported optical fiber modal interferometers, higher phase sensitivity can be obtained in our scheme due to the multipath interference configuration embedded in one fiber. A very high temperature sensitivity of 130.6 pm/°C has been achieved, and the maximum strain sensitivity is less than 0.284 pm/με in all experiments. A record low strain-to-temperature cross-sensitivity of 6.2 × 10?4 °C/με has been realized, and it shows great significance of this in-fiber integrated multipath Mach–Zehnder interferometer in practical temperature sensing applications.  相似文献   

15.
王向林  侯洵  魏志义 《光子学报》2014,38(11):2738-2741
通过将1 kHz重复频率的飞秒放大激光脉冲耦合到大芯径(100 μm)阶跃光纤,在27 mm长的光纤中产生了环形空间光强分布,并在3 160 mm的长光纤中观察到平台型的空间光强分布,通过自聚焦效应对该现象进行了解释.结果表明,通过选择合适的光纤,可以实现对放大飞秒激光脉冲的有效空间整形,从而达到改善光束质量的效果.  相似文献   

16.
In this paper, a surface plasmon resonance fiber sensor based on gold nano-column array instead of gold film is designed and optimized. The finite element method is used to optimize the diameter of the nano-gold column under the consideration of figure of merit, which relates to the sensitivity, resonance wavelength and resonance intensity. The optimized sensor has 70 nm gold nano-column coated on a side polished single mode fiber. The results show that the average sensitivity reaches 5318 nm/RIU when the environmental refractive index changing from 1.33 to 1.39 RIU, which is much higher than those in the conventional surface plasmon resonance structure. The optimizes design will serve a vital foundation to the fabrication of high performance fiber optic surface plasmon resonance sensors based on nano metallic structure.  相似文献   

17.
We have experimentally demonstrated a tunable multi-wavelength Brillouin–erbium fiber laser with over 40 GHz spacing utilizing two cascaded double Brillouin-frequency-spacing cavities. In this laser configuration, two segments of 25 km-long single-mode fibers are used as Brillouin gain medium in each ring cavity, and a segment of 8 m-long erbium-doped fiber with 980 nm pump is employed to amplify Brillouin pump (BP). At BP wavelength of 1550 nm, BP power of 8.3 dBm (6.8 mW) and the maximum 980 nm pump power of 27.78 dBm (600 mW), seven output channels with fourfold Brillouin-frequency spacing, and the tuning range of 15 nm from 1545 to 1560 nm are achieved. The proposed multi-wavelength Brillouin–erbium fiber laser has wide applications, such as in microwave signal generation and optical communications.  相似文献   

18.
Bubbles generated in water by focusing femtosecond and picosecond laser pulses in the presence of 100 nm gold nanoparticles have been investigated in the fluence range usually used for efficient cell transfection (100–200 mJ/cm2). Since resulting bubbles are at the nanoscale, direct observation using optical microscopy is not possible. An optical in-situ method has been developed to monitor the time-resolved variation in the extinction cross-section of an irradiated nanoparticle solution sample. This method is used to measure the bubbles lifetime and deduce their average diameter. We show that bubbles generated with femtosecond pulses (40–500 fs) last two times longer and are larger in average than those generated with picosecond pulses (0.5–5 ps). Controlling those bubble properties is necessary for optimizing off-resonance plasmonic enhanced ultrafast laser cell transfection.  相似文献   

19.
In our previous studies on the tolerance of living organisms such as planktons and spores of mosses to the high hydrostatic pressure of 7.5 GPa, we showed that all the samples could be borne at this high pressure. These studies have been extended to the extreme high pressure of 20 GPa by using a Kawai-type octahedral anvil press. It was found that the average diameter of the spores of Venturiella exposed to 20 GPa for 30 min was 25.5 μm, which is 16.5% smaller (40.0% smaller in volume) than that of the control group which was not exposed to high pressure. The inner organisms showed a further extent of plastic deformation. As a result, a gap appeared between the outer cover and the cytoplasm. A relationship has been obtained between the survival ratio and plastic deformation of spores of moss Venturiella caused by the application of ultra high pressure.  相似文献   

20.
We propose and experimentally demonstrate switchable and tunable transmission characteristics of a Mach–Zehnder interferometer comb filter based on thermal operation. Its temperature characteristics are investigated to reveal a shift in the peak wavelength position from 0.003 to 0.004 nm/°C and a tunable range of wavelength spacing of 0.76–0.90 nm for maximum and minimum effective lengths, respectively. This configuration provides the unique advantages of an all-fiber structure, tunable wavelength spacing, switchable spectral peaks, independent tuning of the center wavelength and wavelength spacing of the spectral peaks, and low polarization sensitivity. It is relatively simple to fabricate and expected to have applications in temperature fiber optic sensors and multiwavelength fiber laser sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号