首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The use of the [FeIII(AA)(CN)4]? complex anion as metalloligand towards the preformed [CuII(valpn)LnIII]3+ or [NiII(valpn)LnIII]3+ heterometallic complex cations (AA=2,2′‐bipyridine (bipy) and 1,10‐phenathroline (phen); H2valpn=1,3‐propanediyl‐bis(2‐iminomethylene‐6‐methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[CuII(valpn)LnIII(H2O)3(μ‐NC)2FeIII(phen)(CN)2 {(μ‐NC)FeIII(phen)(CN)3}]NO3 ? 7 H2O}n (Ln=Gd ( 1 ), Tb ( 2 ), and Dy ( 3 )) and the trinuclear complex [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3] ? NO3 ? H2O ? CH3CN ( 4 ) were obtained with the [CuII(valpn)LnIII]3+ assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[NiII(valpn)LnIII(ONO2)2(H2O)(μ‐NC)3FeIII(bipy)(CN)] ? 2 H2O ? 2 CH3CN}n (Ln=Gd ( 5 ), Tb ( 6 ), and Dy ( 7 )) resulted with the related [NiII(valpn)LnIII]3+ precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3]+, nitrate counterions, and non‐coordinate water and acetonitrile molecules. The heteroleptic {FeIII(bipy)(CN)4} moiety in 5 – 7 acts as a tris‐monodentate ligand towards three {NiII(valpn)LnIII} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the CuII?LnIII ( 1 – 3 ) and NiII?LnIII ( 5 – 7 ) units, as well as through the single cyanide bridge between the FeIII and either NiII ( 5 – 7 ) or CuII ( 4 ) account for the overall ferromagnetic behavior observed in 1 – 7 . DFT‐type calculations were performed to substantiate the magnetic interactions in 1 , 4 , and 5 . Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out‐of‐phase ac signals below 4.0 K in the lack of a dc field, the values of the pre‐exponential factor (τo) and energy barrier (Ea) through the Arrhenius equation being 2.0×10?12 s and 29.1 cm?1, respectively. In the case of 7 , the ferromagnetic interactions through the double phenoxo (NiII–DyIII) and single cyanide (FeIII–NiII) pathways are masked by the depopulation of the Stark levels of the DyIII ion, this feature most likely accounting for the continuous decrease of χM T upon cooling observed for this last compound.  相似文献   

2.
Transition metal (NiII, CoII, and CuII) complexes with 1,2-bis[2-(3-pyridylmethylideneamino)phenylthio]ethane (1) and 1,2-bis[2-(4-pyridylmethylideneamino)phenylthio]ethane (2) were synthesized for the first time by slow diffusion of solutions of compounds 1 or 2 in CH2Cl2 into solutions of MX2 · nH2O (M = Ni, Co, or Cu; X = Cl or NO3; n = 2 or 6) in ethanol. The reactions with CoII and CuII chlorides afford complexes of composition M(L)Cl2 (L = 1 or 2). The reactions of compound 1 with NiII salts produce complexes with 1,2-bis(2-aminophenylthio)ethane. The molecular structure of dinitrato[1,2-bis(2-aminophenylthio)ethane]nickel(ii) was confirmed by X-ray diffraction. The ligands and the complexes were investigated by cyclic voltammetry and rotating disk electrode voltammetry. The initial reduction of the complexes proceeds at the metal atom. The oxidation of the chlorine-containing complexes proceeds at the coordinated chloride anion. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 350–355, February, 2008.  相似文献   

3.
The complex formation of Co2+, Ni2+, Cu2+, Zn2+, Pb2+ and Hg2+ with three tetraamines of type H2N? (CH2)2? NH? (CH2)n? NH? (CH2)2? NH2 (= 2, n, 2-tet) for n = 2. 3 and 4, and with N-methylethylenediamine (= nmen) have been investigated at 25° and I = 1(KNQ3). The stability constants and the heat evolved by formation of the (1:1)-complexes ML have been determined. It is shown that the more stable complexes are normally formed by 2,3,2-tet-ligands. These results are discussed relating the thermodynamic data obtained to the stereochemistry of the complexes and using the visible spectra of the complexes in solution. The change in enthalpy is found to be the dominant factor and the measure of the steric strain whereas the entropy of complex formation decreases slowly.  相似文献   

4.
Metal Complexes of Phosphinic Acids. XVII. Investigations on the Oligomerisation of NiII and CoII Complexes of Bifunctional Dithiophosphinic Acids Alkali or ammonium salts of bifunctional dithiophosphinic acids react with Ni2+ or Co2+ to give complexes [S2P(R)? (CH2)n? (R)PS2M]m or x (R = 4-methoxyphenyl; M = Ni2+, Co2+; n = 4? 10) some of which are soluble in organic solvents and of low molecular weight (m), while others are insoluble (x). According to magnetic and spectroscopic measurements all of them contain planar NiS4 or tetrahedral CoS4 chromophors. While the insoluble compounds are regarded as coordination polymers, it is shown by osmometric measurements and by 31P{1H} spectroscopy, that there exists the equilibrium monomers (ansa type) ? oligomers in solutions of the soluble complexes. The influence of n on the solubility and the equilibrium is discussed. The association can be explained by simple statistic considerations.  相似文献   

5.
The complex Pd(μ-OOCMe)4Cu(OH2) · 2Pd3(μ-OOCMe)6 was synthesized and characterized by X-ray crystallography. In the heterometallic moiety of this complex, the PdII and CuII atoms are at an extraordinary short distance (2.521(3) Å). DFT quantum-chemical calculations of the geometric and electronic structure of a series of heterobinuclear paddlewheel complexes PdIIMII(μ-OOCMe)4L (M = ZnII, NiII, CuII, CoII, FeII; L = OH2 and NCH) and their formate analogues PdIIMII(μ-OOCH)4L (M = ZnII, NiII, FeII) showed that the extraordinary short Pd?M distance in all these complexes is caused only by the tightening effect of carboxylate bridges rather than by the metal-metal bond. The direct Pd-M interaction becomes possible only after removal of electrons from the antibonding orbitals and formation of oxidized complexes of the [PdIII(μ-OOCMe)4NiIII]2+ type.  相似文献   

6.
By using the node‐and‐spacer approach in suitable solvents, four new heterotrimetallic 1D chain‐like compounds (that is, containing 3d–3d′–4f metal ions), {[Ni(L)Ln(NO3)2(H2O)Fe(Tp*)(CN)3] ? 2 CH3CN ? CH3OH}n (H2L=N,N′‐bis(3‐methoxysalicylidene)‐1,3‐diaminopropane, Tp*=hydridotris(3,5‐dimethylpyrazol‐1‐yl)borate; Ln=Gd ( 1 ), Dy ( 2 ), Tb ( 3 ), Nd ( 4 )), have been synthesized and structurally characterized. All of these compounds are made up of a neutral cyanide‐ and phenolate‐bridged heterotrimetallic chain, with a {? Fe? C?N? Ni(? O? Ln)? N?C? }n repeat unit. Within these chains, each [(Tp*)Fe(CN)3]? entity binds to the NiII ion of the [Ni(L)Ln(NO3)2(H2O)]+ motif through two of its three cyanide groups in a cis mode, whereas each [Ni(L)Ln(NO3)2(H2O)]+ unit is linked to two [(Tp*)Fe(CN)3]? ions through the NiII ion in a trans mode. In the [Ni(L)Ln(NO3)2(H2O)]+ unit, the NiII and LnIII ions are bridged to one other through two phenolic oxygen atoms of the ligand (L). Compounds 1 – 4 are rare examples of 1D cyanide‐ and phenolate‐bridged 3d–3d′–4f helical chain compounds. As expected, strong ferromagnetic interactions are observed between neighboring FeIII and NiII ions through a cyanide bridge and between neighboring NiII and LnIII (except for NdIII) ions through two phenolate bridges. Further magnetic studies show that all of these compounds exhibit single‐chain magnetic behavior. Compound 2 exhibits the highest effective energy barrier (58.2 K) for the reversal of magnetization in 3d/4d/5d–4f heterotrimetallic single‐chain magnets.  相似文献   

7.
Abstract

Urease catalyzes the decomposition of urea into ammonia, which has harmful effects on both human health and fertile soil. Aiming at exploring novel urease inhibitors, a series of hydrazone compounds and their CoIII, CuII, NiII, and ZnII complexes were prepared from 4-methoxy-N'-(pyridin-2-ylmethylene)benzohydrazide (HL). They are [CoClL(NCS)] (1), [CoL2]·Cl·CH3OH·H2O (2), [CuL(NCNCN)]n·nCH3OH (3), [NiL(HL)]·ClO4·CH3OH (4) and [ZnClL(OH2)]·CH3OH (5). The compounds were characterized by physico-chemical methods. Structures of the complexes were further confirmed by single crystal X-ray diffraction. The metal ions in 1, 3, and 5 display square pyramidal coordination and 2 and 4 display octahedral coordination. The inhibitory effects of the compounds on Jack bean urease were evaluated. The results showed that 3 has effective urease inhibitory activity, with IC50 value of (7.3?±?1.0) μmol L?1.  相似文献   

8.
Summary Magnetic susceptibilities of the biacetyldihydrazone (BdH) complexes [M(BdH)3](NO3)2 (M = CoII, NiII, CuII or ZnII), [Fe(BdH)3](NO3)3, [M(BdH)3](Ni(dto)2] (M = CoII, NiII or ZnII; dto = dithiooxalate), [(BdH)2Cu(dto)Ni(dto)] and [Fe(BdH)3]2[Ni(dto)2]3 have been studied in the 4.2–295 K range. ZnII complexes are diamagnetic, and complexes of NiII, CuII and FeIII obey the Curie-Weiss law. The CoII complexes behave anomalously and the results are interpreted in terms of a high spinlow spin equilibrium.  相似文献   

9.
The synthesis and characterization of some transition metal cis-3,7-dimethyl-2,6-octadiensemicarbazone (CDOSC) complexes are reported. The ligand CDOSC yields: [ML2 Cl2] and [ML2 Cl2] Cl type complexes, where M = CrIII, MnII, FeIII, CoII, NiII, CuII, ZnII, CdII and HgII, L = CDOSC. Structures of the complexes were determined using elemental analysis, molar conductivity, magnetic measurements, i.r. and electronic, as well as n.m.r spectra. CDOSC acts as a bidentate ligand in all the complexes. All the newly synthesized metal complexes, as well as the ligand, were screened for their antibacterial activity. All the complexes exhibit strong inhibitory action against Gram (+) bacteria Staphylococcus aureus and Gram (−) bacteria Escherichia coli. The antibacterial activities of the complexes are stronger than those of the ligand CDOSC itself.  相似文献   

10.
Summary FeIII, CoII, NiII and CuII complexes of a new Schiff base, 2-phenyl-1,2,3-triazole-4-carboxalidene-2-aminophenol (PTCAP), have been synthesized and characterized by elemental analyses, molar conductance and magnetic susceptibility measurements, and by u.v.-vis., i.r. and e.p.r. spectral observations. The studies indicate an octahedral structure for the complexes with the general formula [ML2] (M = CoII, NiII or CuII.; L = PTCAP) or [M′(OH)L2] (M′ = FeIII). The i.r. spectra suggest that the ligand acts as a tridentate (NNO) donor towards CoII, NiII and CuII, and, in the FeIII complex, one of the two ligand molecules acts as a bidentate (NO) donor and the other as a tridentate donor. The M?ssbauer spectrum of the FeIII complex suggests the presence of a spin equilibrium at room temperature. Cyclic voltammograms are also recorded for the CuII and FeIII complexes.  相似文献   

11.
Polysulfonyl Amines. XXXVII. Preparation of Mercury Dimesylamides. Crystal and Molecular Structures of Hg[N(SO2CH3)2]2, Hg[{N(SO2CH3)2}2(DMSO)2], and Hg[{N(SO2CH3)2}2(HMPA)] Hg[N(SO2CH3)2]2 ( 1 ) and Hg2[N(SO2CH3)2]2 ( 2 a ) are formed as colourless, sparingly soluble precipitates when solutions of Hg(NO3)2 or Hg2(NO3)2 in dilute nitric acid are added to an aqueous HN(SO2CH3)2 solution. By a similar reaction, Hg2[N(SO2C6H4 ? Cl? 4)2]2 is obtained. 1 forms isolable complexes of composition Hg[N(SO2CH3)2]2 · 2 L with L = dimethyl sulfoxide (complex 3 a ), acetonitrile, dimethyl formamide, pyridine or 1,10-phenanthroline and a (1/1) complex Hg[N(SO2CH3)2]2 · HMPA ( 4 ) with hexamethyl phosphoramide. Attempted complexation of 2 a with some of these ligands induced formation of Hg0 and the corresponding HgII complexes. Crystallographic data (at -95°C) are for 1: space group 141/a, a = 990.7(2), c = 2897.7(8) pm, V = 2.844 nm3, Z = 8, Dx = 2.545Mgm?3; for 4a: space group P1 , a = 767.8(2), b = 859.2(2), c = 925.2(2)pm α = 68.44(2), β = 86.68(2), γ = 76.24(2)°, V = 0.551nm3, Z = 1, Dx = 2.113 Mgm?3; for 4: space group P21/c, a = 1041.3(3), b = 1545.4(3), c = 1542.5(3) pm, β = 100.30(2)°, V = 2.474nm3, Z = 4, Dx = 1.944Mgm3. The three compounds form molecular crystals. The molecular structures contain a linear or approximately linear, covalent NHgN moiety; the Hg? N distances and N? Hg? N angles are 206.7(4) pm and 176.3(2)° for 1, 207.2(2) pm and 180.0° for 3a, 205.7(4)/206.7(4) pm and 170.5(1)° for 4. In the complexes 3a and 4, the 0-ligands are bonded to the Hg atoms perpendicularly to the N? Hg? N axes, leading in 3a to a square-planar trans-(N2O2) coordination with Hg? 0 261.2(2) pm and N? Hg? O 92.3(1)/87.7(1)°, in 4 to a slightly distorted T-shaped (N2O) geometry with Hg? 0 246.2(4)pm and N? Hg? 0 96.7(1)/92.0(1)°. In all three structures, the primary coordination is extended to a severely distorted (N2O4) hexacoordination by the appropriate number of secondary, inter- and/or intramolecular Hg…?0 inter-actions (0 atoms from sulfonyl groups, Hg…?O distances in the range 280—300pm). The intramolecular Hg…?O interactions give rise to nearly planar four-membered [HgNSO] rings. The molecule of 1 has a two-fold axis through the bisector of the N? Hg? N angle, the molecule of 3a an inversion center at the Hg atom. The molecule of 4 has no symmetry.  相似文献   

12.
Molecular Structures of Copper(II) and Iron(III) Chloro Complexes with di- and monoprotonated N-(pyrid-2-ylmethyl)ethylenediamine-N,N′,N′-triacetate (H2pedta?; Hpedta2?) The molecular structures of two complexes of di- and monoprotonated N-(pyrid-2-ylmethyl)ethylenediamine-N,N′,N′ -triacetate (pedta3?) with CuII and FeIII as central atoms have been determined by single crystal X-ray diffraction methods. Both complexes have a distorted octahedral coordination with H2pedta? and Hpedta2? as pentadentate ligands and a chloride ion occupying the sixth coordination site. The different oxidation states of the central atoms result in a completely different coordination behaviour of the carboxyl groups. In both complexes one of the ? CH2? COOH groups is uncoordinated. In the FeIII complex, the central atom is coordinated by the hydroxylic O atoms of the deprotonated carboxyl groups. Contrary to this in the CuII complex, the central atom is coordinated by the carbonylic O atoms. One of the coordinated carboxyl groups is protonated and the other is deprotonated. All protonated carboxyl groups in both complexes form intermolecular hydrogen bonds.  相似文献   

13.
Summary The complexes of MnII, CoII, NiII, CuII, ZnII, CdII, HgII, CoIII and UO 2 2+ ions with 2-hydroxyimino-3-(2-hydrazonopyridyl)-butane (HL) have been synthesised and characterized by elemental analyses, molar conductivities, magnetic measurements and spectral (i.r., visible, n.m.r.) studies. I.r. spectra show that HL behaves as a neutral or mononegative ligand and binds in a bidentate and/or tridentate manner. Also, HL behaves as oxidizing agent towards CoII forming diamagnetic CoIII complexes depending on the preparative conditions. Different stereochemistries are proposed for MnII, CoIII, CoII, NiII and CuII on the basis of spectral and magnetic studies.  相似文献   

14.
On the Coordination Chemistry of Phosphines and Phosphinoxides. XXXI. Cobalt and Rhodium Complexes of Primary Mercaptoalkylphosphines and Remarks on the Complex Formation of Quadridentate P,P,S,S Ligands Primary Mercaptoalkylphosphines (H2P? CH2 · CH2? SH; H2P? CH2 · CHCH3? SH) react with d7-metal salts to give octahedron 1:3 chelat complexes. In case of cobalt the oxidation of CoII to CoIII are obtained by formation of H2. Structure and properties of these complexes as well as their reactivity like S-alkylation or metallation with following reactions are described. Reaction scheme see ?Inhaltsübersicht”?. With quadridentate ligands HS+ +PH+ +PH+ +SH = L result chelat-complexes of the type [MIII? L XNH3] (M = Co, Rh) and such as [MII? L] (M = Ni, Pd, Pt).  相似文献   

15.
Summary The formation constants of 1-phenyl-3-thiazole-2-ylthiourea complexes with some bivalent metal ions (CuII, NiII, ZnII and MnII) have been determined in 75% EtOH–H2O. Complexes of CuII, NiII, ZnII, HgII and PdII have been isolated and characterized by conductance, i.r., electronic spectra and magnetic measurements. The ligand forms ML complexes with CuII and HgII and ML2 with NiII, ZnII and PdII, where L is the uninegatively charged bidentate ligand and binds through the ring nitrogen and thiocarbonyl sulphur atoms.  相似文献   

16.
Summary The far-i.r. and Raman spectra of a closely related group ofpseudo-tetrahedral complexes of general formula [MX2EDM] are reported (M = CoII, NiII, CuII, ZnII; X = Cl or Br). EDM, ethylenedimorpholene, acts in these compounds as a bidentate nitrogen donor. The main skeletal vibrations are assigned under the approximate symmetry of theC 2v (MX2Y2) point group.  相似文献   

17.
Reactions of hydroxyethyl cellulose (HEC) with Cr III, NiII, CoII, or CuII chlorides in aqueous medium yielded complexes with formulae [M(HEC)Cl m .n H 2O], wherem =1 or 2 and n=2 or 3. HEC acted as a uninegatively charged bidentate ligand in the case of CrIII and NiII, and as a neutral ligand in the case of CoII and CuII complexes. The spectra showed that the binding sites in CrIII and NiII complexes were the ether oxygen between two ethoxyl groups and the oxygen of the hydroxyl group; while in the CoII and CuII complexes the binding sites were the oxygen of ethoxyl groups and the primary alcoholic O atom of glucopyranose rings. These complexes would most likely exhibit octahedral geometry with CrIII, NiII, and CoII, but square planar configuration in the case of the CuII complex. The ligand parameters of the CrIII, NiII, and CoII metal chelates were calculated in different solvents and at different temperatures. The thermal stability of the above complexes was investigated and the overall thermodynamics functions G0, H0, and S0, associated with complex formation, were estimated.  相似文献   

18.
Chelate Formation with 1,3-Diamino-2-methylene Propane1 1,3-Diamino-2-methylene propane and its N, N′ alkylated derivatives form crystalline chelates with CoII (1:3), NiII (1:1, 1:2 and 1:3), PdII (1:1, 1:2), RhIII (1:1) and CuII (1:2). Experiments for preparation of olefin complexes were unsuccessful. By potentiometric measurements the base strengths of the ligands as well as the stability constants of the CoII, NiII, PdII, CuII, ZnII, CdII chelates were evaluated and the kinetics of the formation of the 1:1 PdII complex is investigated. The magnetic behaviour of the CoII?, PdII? and CuII? chelates is normal, whereas[Ni(dia)2(H2O)2] (ClO4)2 shows anormal behaviour due to configurational isomerism between square planar and octahedral ligand geometry in solid state in type of a LIFSCHITZ -isomerism. The ESR-spectra of the CuII?compounds are discussed and the bonding parameters of the Cu? N?bonds were calculated.  相似文献   

19.
Summary The preparations and characterisation are reported of a range of complexes of NiII, CuII, RhII, and PtII with 6-chloro-2-methoxyacridine substituted in the 9-position with –NH(CH2)nNR2 groups (where n=2 or 3, R=H or Me), and of complexes with 7-chloroquinoline analogously substituted in the 4-position. The preparations are also reported of complexes of the types [Rh(CH3CO2)2L]2, Cu(CH3CO2)2L2, PtL2Cl2, and (LH)2[PtCl4], where L=N-(2,2-dimethylaminoethyl)-3-nitro-1, 8-naphthalimide (mitonafide) and/or its 2,2-aminoethyl-, 2,2-aminopropyl-, or 2,2-dimethylaminopropyl analogues. Initial cytotoxicity studies are reported for some of the Pt compounds.  相似文献   

20.
Abstract

The combination of the properties of different subunits in a multicomponent system may give rise to a function which is defined supramolecular. The presence of transition metals in one or more subunits may induce inter-component processes related to their redox and electron transfer (eT) properties, which trigger the supramolecular function (SF). The following examples are considered: (1) a receptor for transition metals is covalently linked to a fluorescent fragment; following recognition, a metal-to-fluorophore eT process quenches the fluorescence. SF: fluorosensing. (2) an azacyclam macrocycle, hosting the NiII/NiIII redox couple, is covalently linked to a photoactive fragment: the NiIII state quenches the neighboring fluorophore through an eT mechanism, the NiII state does not. SF: redox switching of a fluorescent signal. (3) a CuII ion is coordinated by two 2,2′-bipyridine molecules, each bearing a cyclam subunit containing a nickel centre; when nickel is in the divalent state, an inorganic anion X? (N3 ?,NCO?,NCS?) is bound to CuII; on oxidation, X? moves to the NiIII centre. SF: electrochemically triggered translocation of X? from copper to nickel and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号