首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bonding features and electronic structures of a series of transition metal carbon dioxide complexes have been studied by density functional theory (DFT) calculations combined with natural bond orbital (NBO) analysis and energy-decomposition analysis (EDA). NBO analysis shows that the interaction between the metal center and the carbon atom of the carbon dioxide ligand (M–C) is stronger than the other interaction between the metal center and the carbon dioxide ligand. Natural hybrid orbital (NHO) analysis gives the detailed bonding features of the M–C bond for each complex. The NBO charge distribution on the carbon dioxide unit in all studied complexes is negative, which indicates charge transfer from the metal center to the carbon dioxide ligand for all studied complexes. The hyperconjugation effect of the metal center and the two C–O bonds of the carbon dioxide ligand has been estimated using the NBO second-order perturbation stabilization energy. It was found that the NBO second-order stabilization energy of C–O?→?nM* is sensitive to the coordinated sphere and the metal center. Frontier molecular orbital (FMO) analysis shows that complexes 1 and 4 may be good nucleophilic reagents for activation of the carbon dioxide molecule. However, the EDAs show that the M–CO2 bond interaction energy of complex 4 is about two times as large as that of complex 1. The high M–CO2 bond interaction energy of complex 4 may limit its practical application.  相似文献   

2.
ABSTRACT

High pressure carbon dioxide treatment is a non-thermal pasteurization technique. However, critical damage, resulting from the treatment, to microbial cells has not been observed directly, and the detailed mechanism of the microbicidal activity is not understood. In this study, we analyzed the damage to Saccharomyces cerevisiae organelles, which were visualized using organelle-specific GFP fusion proteins. Yeast strains were subjected to high pressure carbon dioxide treatments at 30°C and 4.0?MPa for 2–8?h. Reduction in yeast cell viability was accompanied by the disruption of endoplasmic reticulum, nuclear membrane, Golgi body, and nucleolus. However, visible damage to the cell membrane was not observed. Fluorescence microscopy was utilized to confirm that high pressure carbon dioxide treatment damaged membranes of major organelles, but not the cell membrane.  相似文献   

3.
Abstract

A fiber-optic chemical sensor (FOCS) for detection of nitrogen dioxide (NO 2 ) molecules is reported. The FOCS presents an optropode structure because of the transmission properties of the sensitive material. The NO 2 FOCS is activated by using the semiconductor polymer: regioregular head-to-tail poly(3-octylthiophene-2,5-diyl). The operation wavelength of the sensor is 543.5 nm such that a simple LED and detector can be used for the design of this device. The sensor response decreases after each exposure, demonstrating the reduction in sensitivity as well as irreversibility lower than 5%. However, its properties such as rapid response, high selectivity, high sensitivity (0.43 ± 0.01 muW/ppm), hygroscopic properties, and its operation at room temperature make this kind of FOCS a good alternative for NO 2 toxic gas detection.  相似文献   

4.
The propagation of a laminar spherical flame in stoichiometric mixtures of methane, and pentane with air in the presence of argon and carbon dioxide and in hydrogen-air-propylene mixtures at atmospheric pressure in a constant-volume bomb is investigated using high-speed color cinematography. It is shown that, under the experimental conditions employed (at T 0 = 298 K and a spark energy of E 0 = 0.91 J), dilution of the combustible mixtures with these additives can cause a more than 10-fold increase in the time of formation of a steady flame front, with the inhibiting effect of carbon dioxide being stronger than that of argon. Small additives of propylene, a chemically active inhibitor, are demonstrated to substantially increase the time it takes to form a steady flame front and reduce the flame propagation velocity.  相似文献   

5.
The results of non-equilibrium heating of air, carbon dioxide, nitrogen in a plasmatron with porous arc channel at intense gas blow are presented. The investigations are performed in the current range 100–500 A, at the gas pressure being higher than atmospheric. The deviation from the equilibrium conditions in the flow behind the plasmatron for air and carbon dioxide is evaluated by reaction products of nitrogen oxides synthesis and carbon dioxide conversion outputs. It is shown that these processes have non-equilibrium mode and it can explained by an increased products output. For nitrogen the excess of the vibrational temperature Tv over the translational T is defined by the laser probe method (at T = 1500 K Tv = 3000 K).  相似文献   

6.
Multi-wall carbon nanotubes (MWNTs) have a great commercial potential as electron field emitters, but suffer from fundamental problems such as stability and brightness. By depositing the MWNTs with nano-sized ruthenium dioxide (RuO2) particles, a new high performance emitter has been developed. When compared to MWNTs, the MWNTs impregnated with 1–2 nm sized RuO2 have superior and more efficient electrical characteristics. MWNTs supported by a silicon substrate showed a reduction in the onset voltage from 5.4 to 4 V/μm after RuO2 impregnation. The long-term stability of the impregnated MWNTs is also demonstrated with only a 20% increase in applied voltage required after 700 h operation at 40 mA/cm2.  相似文献   

7.
A gravimetric method was used to study the sorption and diffusion of supercritical carbon dioxide in a temperature range from 40°C to 80°C and a pressure range from 8.0 to 18.0 MPa in a biodegradable polymer, namely poly(butylene adipate-co-terephthalate) (PBAT). The PBAT presented Fickian behavior and Fick's diffusion model was applied to determine the amount of carbon dioxide present in the samples after a predetermined exposure time as well as the diffusion coefficients. The variations of diffusion coefficients of CO2 for the sorption under supercritical conditions and desorption at ambient conditions as well as equilibrium sorption amounts of CO2 with variations of pressure and temperature were determined and compared.  相似文献   

8.
Hydrous ruthenium dioxide, RuO2·xH2O, is a material of active investigation as an electrode material for supercapacitors. A combination of elastic and inelastic neutron scattering together with thermal gravimetric studies and DFT calculations have provided new insight into the nature of the surface species present on RuO2·xH2O. Our results confirm that hydrous ruthenium oxide is a nanocrystalline material consisting of a core of RuO2. We show that the surface consists largely of Ru–OH with small amounts of water hydrogen-bonded to the surface. The hydroxyls are stable up to ~200°C, i.e. over the composition range x?=?0.2–2. The optimal supercapacitor material has x?=?0.5–0.7, and in this range, the surface is fully hydroxylated. This provides a route for the proton transport: a proton can attach to a surface hydroxyl to generate coordinated water, proton transport then occurs along the hydrogen-bonded chain by a Grotthuss mechanism.  相似文献   

9.
介绍了基于傅里叶变换红外技术检测CO2气体碳同位素比的新方法, 详细介绍了如何从HITRAN红外数据库中提取气体标准吸收截面; 介绍了基于非线性最小二乘法反演CO2气体碳同位素比和整套实验装置的组成及实验步骤. 从理论和实验分析两方面讨论了温度和气压变化对δ13CO2值的影响规律. 对于同一CO2标准气体, 采用FTIR和同位素质谱法两种技术进行了δ13CO2值对比检测, 两种测量技术的平均值差异仅为0.25%. 从实验结果可以看出, FTIR技术可以实现对CO2气体碳同位素比的检测.  相似文献   

10.
Catalytic hydrogenation of nitrobenzene in the medium of isopropanol and supercritical (SC) carbon dioxide using hypercrosslinked polystyrene-based ruthenium catalysts was studied. Carrying out this process in a SC-CO2 medium allows higher reaction rates and selectivity for the target product, aniline.  相似文献   

11.
ABSTRACT

In this paper, the oxidation/conversion process of carbon monoxide (CO) has been examined under various temperatures on the surface of three types of catalysts (TAl2O3, TAl2O3+CuO and RTAl2O3+CuO). The catalyst samples have been exposed to γ-rays in various absorption doses which allow us to analyze anion center distribution. The example research shows that the size and element density of anion nanocenters depends on the radiation dose. The high fraction of atomic oxygen emerged on the surface of mixed nano-Al2O3 and Al2O3-CuO shows a continuing increase depending on absorption dose, while the initial radiation creates additional anion (O–) centers. Consequently, a contraction of the energy required to activate the centers derives faster conversion.  相似文献   

12.
The extraction of biologically active substances by carbon dioxide from various plant raw materials (amaranth seeds, Sophora japonica flower buds, Stephania rotunda stems, and Stevia rebaudiana leaves) was studied at sub- and supercritical parameters. A laboratory unit for the extraction of plant raw materials by liquefied gases and supercritical fluids at 5–35 MPa pressures and 285–350 K temperatures was developed. The maximum yield of the extracted substances from plants specified was obtained at temperature and pressure exceeding the critical parameters of CO2 (320–330 K, 28–30 MPa).  相似文献   

13.
A microscopic model of the high-temperature (T≈2670 K) phase transition of uranium dioxide to the super-ion state is developed. It is shown that accounting for the interaction of the point defect subsystem with the electron subsystem in the mean-field approximation (where this interaction leads to significant additional screening of the charge of some of the defects) and then calculating the configurational entropy of the point defects with allowance for the actual symmetry of the UO2 crystalline lattice affords satisfactory agreement with the available experimental data on the degree of disorder of the anion sublattice and the behavior of the specific heat of uranium dioxide in the given temperature range. Zh. éksp. Teor. Fiz. 111, 585–599 (February 1997)  相似文献   

14.
We present a technique which makes it possible to simultaneously determine the temperature T and the partial pressure of carbon dioxide in a vibrationally equilibrium gas mixture at atmospheric pressure by using the experimentally measured spectral distribution of the absorption factor at the oscillation lines of a tunable CO2 laser. The technique developed can be employed for monitoring both the energy efficiency and the ecological purity of the processes of combustion of large amounts of hydrocarbon fuels accompanied by release to the atmosphere of combustion products containing carbon dioxide.  相似文献   

15.
The crystal structure of (TMTSF)2ClO4 has been determined at (7 K, 1 bar) and at (7 K, 5 kbar) with a high accuracy. For the latter, low temperature and pressure were applied simultaneously using a X-ray diffraction instrumentation designed in our laboratory, these results are the first for molecular compounds. The effects of lowering the temperature are not the same as those produced by increasing the pressure. At (7 K, 1 bar) the anion ordering which occurs in this compound, and which is characterised by the appearance of b * /2 superlattice reflections, is well observed. This anion ordering leads to the presence of two independent stacks of TMTSF cations which is the only case found in the Bechgaard salts family. The comparison of the low temperature crystal structures under atmospheric pressure and at 5 kbar shows that the centres of mass are nearly the same, independent of the pressure: the interchain interactions do not depend on the doubling of the unit cell. Under pressure, the ordering (0, 1/2, 0) does not occur at any temperature. These structural data are confirmed by the quantum chemical calculations which show that the difference in the site energy of the two independent cations is 100 meV. Received 10 April 2000 and Received in final form 27 September 2000  相似文献   

16.
Abstract

Poly(butylene adipate-co-terephthalate) (PBAT) nanocomposite films with various contents of nano-titanium dioxide (TiO2) and titanium dioxide doped silver (Ag-TiO2) were prepared by a solvent casting method. The TiO2 and Ag-TiO2 nanoparticles were surface-modified with silane coupling agents to improve their compatibility and dispersibility in the PBAT matrix. They were denoted as mTiO2 and mAg-TiO2, and were characrterized by Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). The morphology of the PBAT nanocomposite films was studied by field emission scanning electron microscopy (FE-SEM). The crystallinity of the PBAT film increased upon the introduction of the nano-TiO2/Ag-TiO2. Its mechanical properties and gas barrier properties were also significantly improved. In addition, the PBAT/mTiO2 and PBAT/mAg-TiO2 nanocomposite films showed a strong antibacterial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) food-borne pathogenic bacteria.  相似文献   

17.
High pressure phase behavior data of mixtures of poly(isodecyl acrylate) [P(IDA)] in supercritical carbon dioxide, dimethyl ether (DME), propane, propylene, butane and 1‐butene have been studied. The phase behaviors for these binary and ternary systems are shown for temperatures below ca. 200°C and pressures up to ca. 1920 bar. The location of the P(IDA)+CO2 cloud‐point curve shifts to lower temperatures and pressures when isodecyl acrylate (IDA) or DME is added to the P(IDA)+CO2 solution. High pressure phase behaviors for IDA in supercritical carbon dioxide were also performed for temperature ranging from 40–120°C and pressures from 38–217 bar. The experimental results in this work are modeled using the Peng‐Robinson equation of state.  相似文献   

18.
A new pulse sequence is introduced for compensation of acoustic ringing effects, which occur in rotating-frame images obtained with the rapid imaging pulse trains (RIPT). The new sequence (RIDE’n RIPT) combines features of ring down elimination (RIDE), the most common difference-spectroscopy sequence for acoustic-ringing compensation, with the advantages of RIPT for fast acquisition of magnetization profiles in B1 field gradients. For even greater time efficiency in many experiments, the two transients of RIDE’n RIPT are combined to a single transient in which data for the difference spectroscopy are collected sequentially. RIDE’n RIPT was used to record one-dimensional profiles of the proton magnetization in supercritical fluid samples of methane in carbon dioxide. The profiles showed substantial improvements over profiles obtained from standard RIPT. To withstand the high pressures required for the supercritical carbon dioxide mixtures, a toroid cavity autoclave (TCA) was used as the NMR resonator and pressure vessel. The well-defined, strong, and nonuniform B1 field of the TCA was used to resolve distances along the radial dimension.  相似文献   

19.
The absorption of carbon dioxide (CO2) in phosphorous-based ionic liquids was studied theoretically by the molecular modeling ab initio density functional theory (dispersion-corrected B3LYP) and second-order M?ller-Plesset perturbation methods. Several types of phosphate- and phosphite-based anions were employed and the calculation results were compared with recent published papers. The interaction energy between CO2 and anion, following the result of Bhargava and Balasubramanian, was calculated in order to have a better understanding on the effect of different functional groups on the interaction between CO2 and anion. The computational results indicated that the molar volume of the anion molecules played an important role on the absorption mechanism of CO2 due to the CO2-philicity of carbonyl and alkyl groups.  相似文献   

20.
In this work, we demonstrate nano‐structured silver particles photo‐reduced from silver nitride (AgNO3) solution using visible‐light‐activated titanium dioxide (TiO2), which can be a convenient and effective substrate for surface enhanced Raman spectroscopy (SERS) observation. Visible‐light‐activated carbon‐containing TiO2 nanoparticles are applied to photo‐reduce and form nano‐structured silver from AgNO3 upon visible‐light illumination. Photo‐reduced nano‐structured silver is used as an active substrate for SERS studies of TiO2 as well as nano diamond and TiO2. The photo reduction of AgNO3 and SERS observation can be obtained by simultaneously using the same visible laser excitation. The coexistence of the anatase phase with small admixture of the rutile phase in the TiO2 can be observed using SERS. The carbon structure in the carbon‐containing TiO2 was determined to be sp2 type carbon bonding by SERS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号