首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Abstract

The fluorescence spectra of Y2O3:Eu3+ nanoparticles have been measured under the pressure of up to 78 kbar at room temperature. In this pressure range, a red-shift of 0.02(1) nm/kbar?1 is noticed for the 0–2 line (5D07F2 transition). This shift is explained by the change of negative charge of the surrounding ligands. Compatibility between measured and calculated values for the 0–2 line position was obtained. The luminescence decay curves of the 5D07F2 transition were studied up to 78 kbar and were found to behave exponentially for all pressures studied. The fluorescence lifetime τ for the 0–2 line (5D07F2 transition) slowly decreased with pressure. The pressure effect on τ for the 0–2 line (5D07F2 transition) was explained by a model which considers the pressure effect on the line position, inter-ionic distance, ion volume and polarizability, molecular volume and polarizability, molecular refractive index and the refractive index medium n med of the surrounding hydrostatic medium. The fluorescence lifetime calculated by the present model is in close correspondence with the experimental values.  相似文献   

2.
The effect of high pressure on salt and water diffusion in the desalting process of cod was studied. Under pressure, up to 300 MPa, the osmotic equilibrium is reached much faster, compared to desalting at atmospheric pressure. Water (D ew) and salt (D es) effective diffusion coefficients reached a maximum at 200 MPa, increasing 500- and 160-fold, respectively, compared with desalting at atmospheric pressure. Increasing pressure up to 300 MPa causes a reduction in both effective diffusion coefficients, although they were still about 70-fold higher than at atmospheric pressure. Up to 200 MPa, a linear correlation was found between D ew and D es and pressure. However, the total diffused amounts of water and salt, when the osmotic equilibrium was reached, were lower under pressure. At atmospheric pressure cod water content increased 1.65-fold, but under pressure the increment was on average 1.25-fold, while salt content decreased to 0.51-fold the initial value at atmospheric pressure and to around 0.75-fold under pressure.  相似文献   

3.
In this study, spherical alginate beads containing pyranine (P y ) as a fluorescence probe were prepared by ionotropic gelation of a sodium alginate solution. The steady state fluorescence technique was used to study pyranine release from the alginate beads crosslinked with calcium, barium and aluminum ions, respectively. The slow release of P y was observed with the time drive mode of the spectrophotometer at 512 nm. Fluorescence emission intensity (I p ) from P y was monitored during the release process, and the encapsulation efficiency (EE) of pyranine from the alginate beads was calculated. The Fickian Diffusion model was used to measure the release coefficients, D sl . It was seen that the slow release coefficients of pyranine from the alginate beads crosslinked with Ca2+, Ba2+, and Al3+ ions increased in the following order: D sl (Al3+)> D sl (Ca2+)> D sl (Ba2+). In contrast, the initial amount of pyranine and EE into the beads showed the reverse behavior.  相似文献   

4.
A new green phosphor Ca12Al14O32Cl2: Tb3+ derived from Tb-doped Ca-Al layered double hydroxide (Tb-doped CaAl-LDH) was prepared through phase transition route. The X-ray diffraction measurement results revealed that the Tb-doped CaAl-LDH transformed into Ca12Al14O32Cl2:Tb3+ phase at 600 °C. With temperature varying from 600, 800–1000 °C, the crystallinity of the Ca12Al14O32Cl2:Tb3+ phase gradually improved. Compositional analyses suggested the chemical formula of the Ca12Al14O32Cl2:Tb3+ phase estimated to be Ca12Al13.52Tb0.48O32Cl2. The Ca12Al13.52Tb0.48O32Cl2 phase can be efficiently excited by near ultraviolet light and show strong green emissions attributed to 5D47FJ (J = 5, 6) transition of Tb3+. The present Ca12Al13.52Tb0.48O32Cl2 may be a promising candidate for green phosphor applied in LED.  相似文献   

5.
The sterile samples of cold-smoked salmon were placed in polyamide–polyethylene pouches and inoculated with three-strain composite of Campylobacter jejuni (inoculum ca 107 CFU g?1). The inoculated samples were sealed under vacuum and subjected to 200, 300 and 400 MPa of hydrostatic pressure for 0, 5, 10 and 15 min. The number of surviving C. jejuni per gram was determined by the 10-fold dilution method followed by plating on Karmali agar. D 10 values were calculated. This work has shown that for reducing C. jejuni in cold-smoked salmon by 6 log units, the application of 200 MPa for 64.26 min or 300 MPa for 17.10 min or 400 MPa for less than 5 min is needed. Applying such parameters of high-pressure processing should not change significantly the organoleptic properties of the product.  相似文献   

6.
Tb3+-doped fluorophosphate glass with a composition of P2O5+K2O+KF+BaO+Al2O3+Tb4O7 was prepared by melt quenching technique and characterized through emission spectra and decay curves as a function of pressure up to 37.7 GPa. The 5D47F3, 7F4 and 7F5 emission transitions shift toward lower energy in the order of?4.7,?2.4 and?4.0 cm?1 GPa?1, respectively, with increasing pressure. A strong increase in the splitting of the 5D47F5 Stark levels with pressure is observed. The decay curves for the 5D4 level are found to be almost perfectly single exponential in the entire pressure range studied. Lifetimes of the 5D4 level are found to decrease strongly from 2564 to 886 μs when pressure is increased from ambient to 37.7 GPa. The pressure dependence of all the derived values of the present study is compared with Tb3+ in other glasses.  相似文献   

7.
In order to clarify the site occupancy of rare-earth ions in rare-earth doped perovskite materials, the un-doped pure CaTiO3 and Eu3+-doped CaTiO3 samples with a series of Ca/Ti ratio were synthesized via high-temperature solid-state reaction method. X-ray diffraction (XRD) powder patterns confirm that the crystal structure keeps invariant at various Ca/Ti ratios. Measurement results of unit-cell parameters and X-ray photoelectron spectroscopy (XPS) indicate that Eu3+ ions enter into the Ca2+ site. The high-resolution photoluminescence spectra of Eu3+ ions at 20 K in all samples did not witness a significant change under the excitation at different wavelength, implying that Eu3+ ions occupy only one type of site. Considering the small spectral splitting range of 5D0 → 7F2 transition and the large intensity ratio of 5D0 → 7F2/5D0 → 7F1, it can be concluded that Eu3+ occupies Ca2+ site with larger coordinate numbers rather than Ti4+ site.  相似文献   

8.
In this contribution, photoluminescence and time-resolved photoluminescence spectra of Ca(NbO3)2 doped with Pr3+ obtained at high hydrostatic pressure up to 72 kbar applied in a diamond anvil cell are presented. At ambient conditions, the emission spectrum obtained in the time interval 0-1 μs is dominated by spin-allowed transitions from the 3P0 state. On the other hand, transitions from 1D2, characterized by a decay time equal to 30 μs dominate the steady-state luminescence.At pressures lower than 60 kbar, the continuous wave emission spectrum consists of sharp lines peaking between 600 and 625 nm, related to the 1D23H4 transition and three lines at 500, 550 and 650 nm related to emission transitions originating from the 3P0 level of Pr3+. The emission from the 1D2 excited state depends weakly on the pressure. Its decay time decreases from 33 μs at ambient pressure to less than 22 μs at 68 kbar. On the other hand, the 3P0 emission is strongly pressure dependent. At pressures of 60 kbar and higher, the Pr3+ emission intensity from the 3P0 state decreases. This is accompanied by a strong shortening of the luminescence decay time.The observed pressure quenching of the f-f emission transitions and the concomitant lifetime shortening have been attributed to increasing crossover from the 3P0 state of Pr3+ to a Pr3+-trapped exciton state.  相似文献   

9.
Effects of the high pressure on the emission spectra of Eu3+-activated L-EuBO3 were considered at room temperature up to 100 kbar. The position of five 0–2 lines in the 5D07F2 transition region was determined. The pressure does not have the same effect on all these lines. In four of them, high pressure induced a red shift with different shift rates:+0.0022,+0.0035,+0.0034 and+0.0027 nm kbar?1, respectively, whereas in the last one, high pressure induced a blue shift with shift rate?0.0034 nm kbar?1. Possible reasons for the mentioned pressure effects on the line positions were considered.  相似文献   

10.
The 5 2D3/2, 5 2D5/2, and 7 2S1/2 states of rubidium and the 7 2D3/2, 7 2D5/2, and 9 2S1/2 states of cesium were populated at low pressure by two photon excitation using a pulsed dye laser. Blue beams from the Rb 6 2P3/2, 1/2–5 2S1/2 and Cs 7 2P3/2, 1/2–6 2S1/2 transitions were observed. In addition, infrared beams were observed arising directly from the pumped 2D states, establishing a collisionless cascade mechanism. Threshold is modest at about 0.3 mJ/pulse or 2×105 W/cm2. Slope efficiencies increase dramatically with alkali concentration and peak at 0.4%, with considerable opportunity for improvement. This versatile system might find applications in both underwater communications and for infrared counter measures.  相似文献   

11.
We report on the detection of Fe i –B pairs in heavily B doped silicon using 57Fe emission Mössbauer spectroscopy following implantation of radioactive 57Mn+ parent ions (T 1/2?=?1.5 min) at elevated temperatures >?850 K. The Fe i –B pairs are formed upon the dissociation of Fe i –V pairs during the lifetime of the Mössbauer state (T 1/2?=?100 ns). The resulting free interstitial Fei diffuses over sufficiently large distances during the lifetime of the Mössbauer state to encounter a substitutional B impurity atom, forming Fe i –B pairs, which are stable up to ~1,050 K on that time scale.  相似文献   

12.
A systematic investigation on the fluorescent spectra of SrB4O7:Sm2+ was performed in detail at high-temperature up to 623?K and/or high pressure up to 23.2?GPa with different pressure-transmitting media (PTMs), respectively. Combined with experiment data of previous research, the change of the 7D05F0 line (0–0 line) full width at half maximum (FWHM) of SrB4O7:Sm2+ under different pressure environments was specifically discussed. The results indicate that the FWHM of 0–0 line is sensitive to the non-hydrostatic pressure environment in 2-propanol, and methanol and ethanol mixture (ME) PTMs at ambient temperature. The first-order and the second-order derivation of the temperature dependence of 0–0 line FWHM at ambient pressure are 1.48(±0.21)?×?10?4?nm/K and 9.63(±0.63)?×?10?7?nm2/K2 below 623?K. The 0–0 line FWHM is also sensitive to the non-hydrostatic pressure environment in ME at high-temperature and high pressure simultaneous, the non-hydrostatic transition pressures are 9.6?GPa at 323?K, 11.0?GPa at 373?K, 14.4?GPa at 423?K, respectively. SrB4O7:Sm2+ is recommended as an optical sensor to reflect the change of pressure environment in liquid media at high-temperature and/or high pressure.  相似文献   

13.
The optical absorption spectra (d-d transition bands) and covalent effect of Ni2+ ions in octahedral sites of Ca3Sc2Ge3O12 crystal have been investigated by the full energy matrix based on the two spin–orbit coupling parameters model. The bond length of octahedral site is Ri?=?2.19 Å, which can be determined by the cubic crystal-field parameter and optical spectral data. The lattice distortion of the Ni2+ center in Ca3Sc2Ge3O12 crystal is also obtained from the calculations. In addition, the result has shown that the covalent effect of Ni2+ ion in the octahedral site of Ga3Sc2Ge3O12 is obvious and cannot be ignored. The calculated d-d transition bands agree well with that of the experimental findings, suggesting that the present methods can explain reasonably the optical spectral data and covalent effect of 3d8 ions in octahedral lattices.  相似文献   

14.
Implantation of any ions at a sufficiently high dose and energy (E) into single-crystalline Si leads to the creation of amorphous Si (aSi), with damages peaking near the projected range (R p) of implanted species. Enhanced hydrostatic pressure (HP) at a high temperature (HT) influences the recrystallization of aSi. The structure of self-implanted Czochralski silicon (Si+ dose, D=2×1016 cm?2, E=150 keV, R p=0.22 μm) processed for 5 h at 1400 or 1520 K under HPs up to 1.45 GPa was investigated by X-ray, secondary ion mass spectrometry and photoluminescence methods. The implantation of Si produces vacancies (V) and self-interstitials (Sii). Vacancies and Siis form complex defects at HT–HP, also with contaminants (e.g. oxygen, always present in Czochralski silicon). The mobility and recombination of V and Sii as well as the kinetics of recrystallization are affected by HP, thus processing at HT–HP affects the recovery of aSi.  相似文献   

15.
ABSTRACT

Absorption and fluorescence spectra obtained at temperatures as low as 4 K were investigated between 200 and 1550 nm on samples containing approximately 1.2 at. wt. % Er in Y3Al5O12 (YAG). Within this wavelength range 125 experimental energy (Stark) levels were analyzed, representing data that span 29 2S+1 L J multiplet manifolds of Er3+(4f11) in D2 sites up to an energy of 44,000 cm?1. Agreement between calculated and observed Stark levels was achieved with an r.m.s. deviation of 11.2 cm?1. These transitions originate from the ground-state Stark level in the 4I15/2 manifold to J + 1/2 Stark levels associated with each of the 28 excited-state manifolds. A total of 88 ground-state absorption transition line strengths were measured for 19 2S+1 L J multiplet manifolds between 280 and 1550 nm. For line strength measurements, the Er3+ ion is assumed to be distributed homogeneously throughout the D2 cation sites of Y3+ in the lattice. The line strengths were analyzed with a weighted (E i  ? C i )/E i , with an r.m.s. error of 0.25. Use of a “vector crystal field” parametrization resolves ambiguities in the transition intensity parameters and allows for the definition of polarization-resolved Judd-Ofelt parameters, which may have wide-ranging applicability for future Judd-Ofelt-type intensity calculations.  相似文献   

16.
We study the light-front zero-mode contribution to the transition form factors (g, f, a ±, T i ) (i = 1, 2, 3) for the exclusive semileptonic PV ? and rare PV ? +?? decays using a covariant fermion field theory model in (3+1) dimensions. While the zero-mode contribution in principle depends on the form of the vector meson vertex Γ μ  = γ μ ? (2k ? P V ) μ /D, the six form factors (g, f, a +, T 1, T 2, T 3) are found to be free from the zero mode if the denominator D contains the term proportional to the light-front longitudinal momentum fraction factor (1/x) n of the struck quark with the power n > 0. Although the form factor a ? is not free from the zero mode, the zero-mode contribution comes only either from the simple vertex Γ μ  = γ μ term or from the other term just with a constant D (i.e. n = 0). We identify the zero-mode operator that is convoluted with the initial- and final-state valence wave functions to generate the zero-mode contribution to a ?.  相似文献   

17.
Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers were synthesized by the hydrothermal reaction method. The structural refinement was conducted on the base of the X-ray powder diffraction (XRD) measurements. The surface properties of the Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers were investigated by the measurements such as the scanning electron microscope (SEM), transmission electron microscope (TEM), and the energy dispersive spectrum (EDS). The nanofiber has a diameter of about 100 nm and a length of several micrometers. The luminescence properties such as photoluminescence excitation (PLE) and emission spectra (PL), decay lifetime, color coordinates, and the absolute internal quantum efficiency (QE) were reported. Ca2B2O5:Eu3+ nanofibers show the red luminescence with CIE coordinates of (x = 0.41, y = 0.51) and the luminescence lifetime of 0.63 ms. The luminescence of Ca2B2O5:Tb3+ nanofibers is green color (x = 0.29, y = 0.53) with the lifetime of 2.13 ms. However, Dy3+-doped Ca2B2O5 nanofibers present a single-phase white-color phosphor with the fluorescence decay of 3.05 ms. Upon near-UV excitation, the absolute quantum efficiency is measured to be 65, 35, and 37 % for Eu3+-, Tb3+-, Dy3+-doped Ca2B2O5 nanofibers, respectively. It is suggested that Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers could be an efficient phosphor for lighting and display.  相似文献   

18.
Microgels with alginate (Alg) gel cores and shells of SiO2 nanoparticles (so-called colloidosomes) were prepared by self-assembly of SiO2 nanoparticles at ALG aqueous solution–hexane interfaces and subsequent in situ gelation caused by Ca2+ ions that were released from calcium-ethylenediamine tetraacetic acid chelate by decreasing the pH value through the slow hydrolysis of D-Gluconic-δ-lactone. The packing density of SiO2 nanoparticles in the shell was about 0.906, indicating that the SiO2 nanoparticles were present monolayer on the surfaces of the colloidosomes. The half release times of insulin microcrystals were 4 h for Alg gel microspheres and 10 h for Alg/SiO2 colloidosomes at pH 7.4, compared to 1.5 h for bare insulin. The half release times of insulin microcrystals were 12 min for Alg gel microspheres and 30 min for Alg/SiO2 colloidosomes at pH 1.2, compared to 30 s for bare insulin. The release rates of insulin from the colloidosomes with core–shell structure were slower than that from bare insulin crystals due to the dual barriers of the hydrogel cores and the close-packed inorganic shells. The release curves were nicely fitted by the Weibull equation and the release followed Fickian diffusion.  相似文献   

19.
By comparing diffusion coefficientsD of bivalent cations Ba2+, Ca2+, Sr2+ in NaCl crystals it was shown that in the temperature range above 550 °CD (Ba2+)>D (Sr2+)>D (Ca2+) is valid. Temperature dependences of jump frequenciesw 2 of these cations are described byw 2 (Ba2+)=(2·15±0·55) × 1012 × exp {?(0·817±0.007)/kT};w 2 (Sr2+)=(2·9±1·1) × 1012 × exp {?(0·84±0.02)/kT} andw 2 (Ca2+)=(5·5±6·5) × 1010 × exp {?(0·51±0·07)/kT}. It was demonstrated that in NaCl crystals the activation enthalpy and the preexponential factor of the jump frequencyw 2 increase with increasing ionic radius and mass of the bivalent alkaline earth cation.  相似文献   

20.
In the present work, red-emitting Ca2V2O7:xEu3+ (x = 0.5–6.0 mol%) nanophosphors, in the form of powders, were synthesized by the citrate-gel combustion method using metal nitrates as precursors and citric acid as fuel. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy, photoluminescence (PL) and cathodoluminescence (CL) spectroscopy were used to study the structure, morphology and spectral properties of the samples. The chemical compositions and electronic states of the powders were analyzed with X-ray photoelectron spectroscopy. The average crystallite sizes estimated using the XRD data were found to be in the range of 30–45 nm, and were cross verified by TEM. The lattice parameters determined by the POWD program were approximated as a = 7.242 Å, b = 6.674 Å, c = 6.932 Å and V = 291.24 Å3, respectively. Under UV (395 nm) (PL) and electron (CL) excitation, the nanophosphors show characteristic emission from the Eu3+ ion (5D0 → 7Fj, j = 1–5) with the main peaks at 612 and 616 nm. The maximum emission intensity was recorded from the sample with an Eu3+ concentration of 4 mol% and a critical energy distance of 19.084 Å between the donor and the acceptor. Above this concentration, there was a reduction in the intensity due to dipole–dipole induced concentration quenching effects. The potential applications of this phosphor as a high color-purity phosphor in light-emitting diodes are evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号