首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
A. L. Ruoff  Y. K. Vohra 《高压研究》2013,33(1-6):791-793
Abstract

Synthetic Type 1b yellow diamonds containing nitrogen in substitutional form and with extremely low birefringence were used as anvils for ultra high pressures in the diamond anvil cell. Pressures were measured by the ruby fluorescence technique to above 200 GPa. Using x-ray diffraction the maximum pressure was 210 GPa, while an x-ray based pressure of 245 GPa was achieved with natural diamonds with a somewhat more optimal geometry. Nitrogen platelets appear to be not essential for exceeding 200 GPa. The optical properties of synthetic diamond at ambient and megabar stresses will be discussed.  相似文献   

2.
ABSTRACT

A high-pressure cell for in-situ single-crystal neutron diffraction was developed. The cell uses nano-polycrystalline diamond anvils in a tubular load frame made of bulk metallic glass which is highly transparent to neutrons and does not produce Bragg reflections. Diffraction peaks from a sample can be measured from almost any direction and the simple geometry of the cell allows accurate attenuation corrections. We demonstrate the operation of the cell by ambient-pressure experiment using a single-crystal of NaCl on the D9 diffractometer at the Institute-Laue-Langevin. A high-pressure experiment was also carried out on a single crystal of ice VII at 2.35?GPa showing the potential to detect weak diffraction spots. The correct integration of weak reflections together with the simple attenuation correction will help to carry out precise structure analysis and address new scientific problems using neutron diffraction.  相似文献   

3.
ABSTRACT

X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) are two complementary structural techniques. Their combination improves the understanding of the effect of pressure on materials as illustrated by examples taken from studies on different types of materials (semiconductors, molecular solid, ferroelectric perovskite and gas mixture). The introduction of nanopolycrystalline diamonds anvils has extended XAS to high-energy edges with the possibility to use energy-scanning XAS beamlines where XRD can be performed in addition to XAS experiments.  相似文献   

4.
ABSTRACT

Here we present trace element compositions of synthetic diamonds, which show spectacular similarity with the compositions of metallic inclusions in type Ib cuboctahedral diamonds in ophiolitic chromitites and peridotites. The compositions of inclusions in synthetic and ophiolite diamonds closely correspond to Ni:Mn:Co?=?70:25:5 in wt.%, which is the most widely used catalyst for HPHT growth of synthetic diamonds in China. Thus, we claim for thorough reconsideration of diamonds in ophiolitic rocks and emphasize that most of them appear by anthropogenic contamination.  相似文献   

5.
57Fe Mössbauer spectroscopy, following the implantation of radioactive parent 57Mn?+? ions, has been performed on two chemical vapour deposited diamond samples, one synthesized in 2003 (CVD03) and the other in 2005 (CVD05). The spectra of sample CVD05 were as observed previously in natural IIa diamonds: single lines corresponding to substitutional and interstitial Fe were superimposed on a broad quadrupole split doublet. The site fraction of Fei reached 30% at 900 K. The spectra of the CVD03 sample showed, in addition to the above features, a strong contribution (>30%) from a quadrupole doublet attributable to the presence of intrinsic amorphous inclusions in the crystallites. This observation has been confirmed by X-ray diffraction.  相似文献   

6.
Abstract

X-ray and neutron powder diffraction data obtained from samples contained within high pressure cells are generally of lower quality than data collected from samples at ambient conditions. The far smaller sample size as well as possible contamination of the pattern by the pressure cell means that Rietveld refinement techniques must be adapted to extract the maximum useful information from the data. These problems become paramount as larger structures at high pressure are attempted. Techniques such as “leBail extraction”, “soft restraints” and “rigid body refinement” will be discussed with application to analysis of high pressure neutron powder diffraction data.  相似文献   

7.
Abstract

High pressure X-ray diffraction studies were performed at room temperature on a uranium-neptunium binary alloy (U0, 40 Np0.60) using a diamond anvil cell in an energy dispersive facility. The sample maintained its simple cubic phase up to 62 GPa (highest pressure reached in This experiment). The bulk modulus and its pressure derivative were determined to be B0 = 82 (2) GPa and B0′ = 9.4 (1.3), from the experimental data in the pressure range 0–20 GPa. The present results are compared with those obtained by the same techniques used for uranium and neptunium.  相似文献   

8.
Abstract

Although potentially extremely important for understanding the high-pressure microscopic behaviour of materials, over the years the area of high-pressure EXAFS in particular using diamond anvil cells has proved to be technically difficult. This has significantly hampered its development. The interference of X-ray dimaction from the diamonds in the diamond anvil cell with the absorption signal has proved to be a challenging problem to tackle, restricting the use of high-pressure EXAFS to energies below about 11 key Below 11 keV however the technique is also limited due to absorption of incident X-rays by the diamonds making it virtually impossible to conduct X-ray absorption experiments below about 9keV In this paper we describe in detail the methodology for scanriirig high-pressure EXAFS in diamond anvil cells and examine the origins of the associated problems and ways of dealing with them. We also demonstrate that it is possible to extend the useful range of studied absorption edges from 7keV up to at least 30keV This brings about new opportunities for high pressure EXAFS using diamond anvil cells.  相似文献   

9.
Abstract

A high pressure cell with profiled anvils for neutron diffraction investigations has been designed and tested. The matrices of the cell are made of alloyed aluminium oxide ceramic. The reliable working pressure range of the cell is up to 7 GPa at a sample volume of 64 mm3. The cell attenuates the neutron flux not more than four times, with the transmission of the cell very slightly depending on neutron wavelength.  相似文献   

10.
Precise dielectric property measurements at a millimeter wave frequency band are attractive. A Fabry-Perot open resonator consisting of hemispherical and plane mirrors, coupling holes is designed by the use of analytic theories and a numerical simulation code. HFSS. Dielectric constant measurements on CVD diamonds are performed by a frequency variation method. Measurements show that permittivity and loss tangent range from 5.59 to 6.46, and from 1.1 × 10−3, to 5.3 × 10−2. respectively, in the frequency range of 95–100 GHz depending on sample preparation of the CVD diamonds.  相似文献   

11.
The present work reports the enhancement of the thermal properties in Ag/diamond matrix composites reinforced with chromium carbide coated diamond particles. The coated diamond particles were characterized by x-ray diffraction, x-ray photoelectron spectroscopy and Raman spectra. The composites were synthesized by spark plasma sintering. The chromium carbide coating on the diamond particles resulted in composites exhibiting improved wettability and strong interfacial bonding between the diamond particles and Ag matrix. The composites with coated diamonds showed a low coefficient of thermal expansion of 8.24 × 10?6/K and a high thermal conductivity of 695 W/mK at 60 % particle volume fraction, which greatly outperformed the composites with uncoated diamonds at the same particle volume fraction. The obtained results are useful for synthesizing Ag/diamond composites with greatly improved thermal performance.  相似文献   

12.
Abstract

A new diamond anvil cell and a helium flow cryostat have been developed for X-ray diffraction on single crystals at low temperatures and high pressures using white radiation of a synchrotron beam. This novel instrument especially enables continuous change of temperature and pressure of the sample without any adjustment of alignment. Automatic search for diffraction peaks can be performed since less than 30 pm eccentricity can be maintained during the rotation of the cell in the cryostat and the rotation of the cryostat on the goniometer head. The minimum temperature reached is 46 K. Measurements of solid 4He at 11.8 GPa are presented which confirm the stability of the hcp phase on this isobar.  相似文献   

13.
ABSTRACT

Nano-polycrystalline diamonds (NPDs) have become fundamental tools for cutting-edge X-ray absorption spectroscopy (XAS) studies at high P/T conditions that opened up new research directions by overcoming previous limitations. Indeed, NPDs yield a continuous and weak X-ray background signal which enables the collection of high-quality XAS data of materials compressed in diamond anvil cells. This is a critical advantage over the classically used single-crystal diamonds that generate strong parasitic signals (glitches) which render the analysis of XAS data in many cases impossible. In this contribution we give an overview of the impact and the scientific opportunities that NPDs opened up for extreme condition XAS spectroscopy at the European Synchrotron Radiation Facility and discuss future needs.  相似文献   

14.
Abstract

A new diamond anvil cell and a helium flow cryostat have been developed for x-ray diffraction on single crystals at low temperatures and high pressures using the white radiation of a synchrotron beam. This novel instrument especially enables continuous change of sample temperature and pressure without any adjustment of alignment. A minimum temperature of 46 K has been reached.

Presented at the IUCr Workshop on ‘Synchrotron Radiation Instrumentation for High Pressure Crystallography’, Daresbury Laboratory 20-21 July 1991  相似文献   

15.
 采用DAC高压X光技术,在320 GPa压力下,对碘进行了结构相变的研究。用耐腐蚀材料Mo作封垫,在室温和无保护气氛下装样。采用Mo内标和红宝石荧光测量进行压力校准。结果表明,在21 GPa时,开始发生结构相变,由面心正交相(Ⅰ相),转变为体心正交相(Ⅱ相),体积缩小2%左右。在21~25 GPa之间为两相共存区;在25 GPa以上完全转变为新的高压单相(Ⅱ相)。此相变为可逆相变。  相似文献   

16.
Abstract

Neutron diffraction was until recently confined to pressures below ~ 3 GPa. This restricted range has limited the high-pressure structural information that is available for a wide range of phenomena for which neutron diffraction is the technique of choice. But now the recently-developed Paris-Edinburgh cell can achieve pressures up to ~ 30 GPa with a sample volume large enough to allow accurate structural studies with neutrons. After a period of development of the neutron scattering techniques needed to obtain the best possible results using the cell, a variety of successful structural studies have been performed. These illustrate the value of neutron diffraction in important areas such as locating hydrogen and other low-Z atoms in structures, the measurement of accurate structural pressure dependence and the examination of the changes in atomic thermal motion with pressure.  相似文献   

17.
ABSTRACT

A new high pressure cell for neutron diffraction experiments using nano-polycrystalline anvils is presented. The cell design, off-line pressure generation tests and a gas-loading procedure for this cell are described. The performance is illustrated by powder neutron diffraction patterns of ice VII to ~82?GPa. We also demonstrate the feasibility of single crystal neutron diffraction experiments of Fe3O4 at ambient conditions using this cell and discuss the current limitation and future developments.  相似文献   

18.

The first electron back-scattered diffraction Kikuchi patterns and grain orientation maps were captured for pure n-phase (fcc) Ce. The sample preparation technique used for electron back-scattered diffraction orientation mapping of this surface-reactive metal included ion sputtering the surface using a scanning Auger microprobe followed by vacuum transfer of the sample from the scanning Auger microprobe to the scanning electron microscope. The effect of ion sputtering on the microstructure as well as preliminary electron back-scattered diffraction microstructural characterization is presented. Based on the sputtering data, the room-temperature diffusivity of O in n-Ce was estimated.  相似文献   

19.
Abstract

The compression behaviour in a multi-anvil apparatus of pure NaCl and of a foil of Ni3Al embedded in a pressure medium of NaCl has been studied by energy-dispersive X-ray diffraction. At ambient temperature, the pressure and stresses, determined from line positions of NaCl, were constant throughout the sample chamber. Line positions and line widths of NaCl reflections were reversible on pressure release. A saturation of microstrains observed in NaCl at 2 GPa is thus attributed to brittle fracture setting in at uniaxial stresses of around 0.3 GPa. Ni3Al polycrystals, in contrast, undergo extensive (ductile) plastic deformation above 4 GPa. The compression behaviour of both Ni3Al and NaCl is identical to that previously determined in a diamond anvil cell. While a multi-anvil device thus has the advantage, compared with a diamond anvil cell, of constant pressure and stress throughout the sample chamber, microstrains in poly-crystalline samples arise in both devices. Samples in a multi-anvil apparatus thus need to be mixed with a pressure medium and to consist of essentially single crystals just as in a diamond anvil cell. Annealing experiments at high pressures confirm that the release of the uniaxial stress component in the pressure medium does not cause a release of microstrains in the embedded sample if the latter has been plastically deformed. Annealing for the purpose of attaining hydrostatic conditions in compression studies thus has to be carried out with care.  相似文献   

20.
Abstract

The high-pressure laboratory X-ray diffraction technique is discussed in a view to its application to structural studies on molecular organic crystals. The signal-to-background ratio and accuracy of intensity measurements can be improved by using relatively big sample crystals and the smallest possible aperture in the gasket. Mechanical properties of the gasket material can be helpful in obtaining optimum experimental conditions when a big sample is mounted in the high-pressure chamber. The accuracy of measurements performed on organic crystals with a Merrill-Bassett cell and a CAD-4 diffractometer are illustrated with the results obtained in the study on the crystals of 1,3-cyclohexanedione at 0.52, 1.14 and 1.90(5) GPa—the structure which undergoes an interesting pressure-induced phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号