首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Abstract

Plutonium monoselenide was studied under high pressure up to 47 GPa, at room temperature, using a diamond anvil cell in an energy dispersive X-ray diffraction facility. At ambient pressure, PuSe has the NaC1-type (B1) structure. The compound has been found to undergo a second-order crystallographic phase transition at around 20 GPa. This phase can be described as a distorted B1 structure, with a rhombohedral symmetry. PuSe transforms to a new phase at around 35 GPa, which can be indexed in the cubic CsCl-type (B2). The volume collapse at this phase transition is 11%. When releasing pressure, we observed a strong hysteresis to the inverse transformation down to 5 GPa. From the pressure-volume relationship, the bulk modulus has been determined to B 0 = 98 GPa and its pressure derivative as B 0 = 2.6. These results are compared to those obtained with other actinide monmictides and monochalcogenides.  相似文献   

2.
Abstract

Time dependencies p(t)V,T, nd V(t),P,T, at room temperature as castor oil phase transition indicators were investigated. The time after which the transition takes place, within the pressure range from 0.36 up to 1.05 GPa, strongly depends on pressure. Its minimum, at about 0.6 GPa is equal to 15 hours. Under the same conditions of experiment the largest change in volume (about ?2%) was detected. The relative changes of volume on pressure for the normal state of castor oil and for its new high pressure state have been found to be approximately the same. A large hysteresis of volume changes after the phase transition has also been observed.  相似文献   

3.
Abstract

The temperature and enthalpy of melting for poly(ethy1ene oxide) have, for the first time, been studied as a fuction of pressure up to 1 GPa by means of differential scanning calorimetry. The initial increase of the temperature of melting with increasing pressure is 64 K/GPa, whereas the enthalpy decreases by 40% in the 1 GPa pressure range. Using Clausius-Clapeyrons equation the volume change on melting is estimated to be 1.5 cm3/mol. The glass transition temperature Tg for polystyrene has also been studied by the same technique for pressures up to 0.1 GPa. The measurements show that Tg increases with increasing pressure by 250 K/GPa.  相似文献   

4.
Abstract

In this study, the elastic, electronic, optical and thermoelectric properties of CaTiO3 perovskite oxide have been investigated using first-principles calculations. The generalised gradient approximation (GGA) has been employed for evaluating structural and elastic properties, while the modified Becke Johnson functional is used for studying the optical response of this compound. In addition to ground state physical properties, we also investigate the effects of pressure (0, 30, 60, 90 and 120 GPa) on the electronic structure of CaTiO3. The application of pressure from 0 to 90 GPa shows that the indirect band gap (Γ-M) of CaTiO3 increases with increasing pressure and at 120 GPa it spontaneously decreases transforming cubic CaTiO3 to a direct (Γ-Γ) band gap material. The complex dielectric function and some optical parameters are also investigated under the application of pressures. All the calculated optical properties have been found to exhibit a shift to the higher energies with the increase of applied pressure suggesting potential optoelectronic device applications of CaTiO3. The thermoelectric properties of CaTiO3 have been computed at 0 GPa in terms of electrical conductivity, thermal conductivity and Seebeck coefficient.  相似文献   

5.

An equation of state (EoS) for Ca(OH)2 portlandite has been obtained through measurements of pressure and temperature dependence of volume by means of in-situ X-ray observation. The bulk modulus and its pressure derivative at zero pressure calculated using third-order Birch-Murnaghan's equation of state is 33.1 GPa and 4.2 at 300 K, respectively. The unit cell parameters and the volumes have been also determined at 573 K and 673 K. Temperature derivatives of the bulk modulus and its pressure derivative have been calculated to be ?0.022 GPa/K and 0.0072 K?1, respectively. Thermal expansion coefficient of portlandite has been calculated from the EoS. The pressure dependence of entropy has been obtained from the present thermo-elastic parameters.  相似文献   

6.
Abstract

High pressure X-ray studies on CuH up to 23 GPa have been performed at room temperature using a gasketed diamond anvil cell. The experimental data on the molar volume of CuH as a function of pressure have been fitted to Murnaghan's equation of state giving a bulk modulus: B0 = 72.5±2 GPa and B0 = 2.7 ± 0.3. By comparison with the equation of state for pure copper the effective additive volume of hydrogen has been evaluated as a function of pressure. It decreases from 3.2 cm3/mol H, at ambient pressure reaching a flattening value of 1.7cm3hol H at about 60 GPa. This suggests a continuous transition of CuH from ionic or covalent character at normal pressure to metallic hydride behavior at high pressure  相似文献   

7.
Abstract

High—pressure crystal structure studies have been performed on Sm up to 100 GPa using synchrotron x-radiation and a diamond anvil cell. The structural sequence Sm-dhcp-fcc-dist.fcc has been confirmed. There is no evidence of any volume collapse. The bulk modulus and its pressure derivative have been determined (B0 = 30.7 GPa, B0’ = 2.5).  相似文献   

8.
We report here high-pressure x-ray diffraction (XRD) studies on tellurium (Te) at room temperature up to 40 GPa in the diamond anvil cell (DAC). The XRD measurements clearly indicate a sequence of pressure-induced phase transitions with increasing pressure. The data obtained in the pressure range 1 bar to 40 GPa fit five different crystalline phases out of Te: hexagonal Te (I) → monoclinic Te(II) → orthorhombic Te (III) → Β-Po-type Te(IV) → body-centered-cubic Te(V) at 4, 6.2, 11 and 27 GPa, respectively. The volume changes across these transitions are 10%, 1.5%, 0.3% and 0.5%, respectively. Self consistent electronic band structure calculations both for ambient and high pressure phases have been carried out using the tight binding linear muffin tin orbital (TB-LMTO) method within the atomic-sphere approximation (ASA). Reported here apart from the energy band calculations are the density of states (DOS), Fermi energy (E f) at various high-pressure phases. Our calculations show that the ambient pressure hexagonal phase has a band gap of 0.42 eV whereas high-pressure phases are found to be metallic. We also found that the pressure induced semiconducting to metallic transition occurs at about 4 GPa which corresponds to the hexagonal phase to monoclinic phase transition. Equation of state and bulk modulus of different high-pressure phases have also been discussed.  相似文献   

9.
Abstract

High-pressure structural transition and volume compression for thallium were investigated to 45 GPa in a diamond anvil cell using the angular dispersive X-ray diffraction technique. Except for the known polymorphic transition at 3.7 GPa, no other structural change was observed in this pressure range. The equation of state of the high pressure phase has been obtained: its initial bulk modulus, B0 = 33.1 GPa, is lower by 10% than that of the hexagonal phase at normal pressure.  相似文献   

10.
Akio Suzuki 《高压研究》2017,37(2):193-199
ABSTRACT

The pressure–volume–temperature (PVT) equation of state (EoS) of natural goethite (α-FeOOH) has been determined by an X-ray diffraction study using synchrotron radiation. Fitting the volume data to the third-order Birch–Murnaghan EoS yielded an isothermal bulk modulus, B0 of 85.9(15)?GPa, and a pressure derivative of the bulk modulus, B′, of 12.6(8). The temperature derivative of the bulk modulus, (?B/?T)P, was –0.022(9)?GPa?K?1. The thermal expansion coefficient α0 was determined to be 4.0(5)?×?10?5?K?1.  相似文献   

11.
Abstract

The velocity of longitudinal ultrasonic waves, ν1,(P), in polycrystalline cesium was measured at 293 ±1K in the pressure interval 0–5 GPa. v 1(P) alterations at BCC-FCC phase transition at 2.3 GPa and at the electronic-structure transformation at 4.3 GPa were obtained. Decrease of v 1(P) to 4.3 GPa after a maximum at ~3.8 GPa were found, that gave evidence to the appearance of a corresponding soft mode in the FCC-Cs phonon spectrum. The peculiarities of dependence v 1(P) correlate with s-conduction electrons promotion to the empty d-band in accordance with the theoretically predicted continuous electronic s-d transformation in Cs.  相似文献   

12.
ABSTRACT

The influences of pressure on structural, elastic, electronic and optical properties of α-RDX under pressure from 0 to 40?GPa have been investigated by performing first-principles calculations. The obtained structural parameters based on the GGA-PBE+G calculations are consistent with previous experimental values. The results of B/G, C12-C44 and Poisson's ratio show that α-RDX has changed to ductility under pressure between 0 and 5?GPa. The obvious rotation of NO2 group in the equatorial position appears, especially in the range of pressure from 10 to 15?GPa, which influences the elastic and mechanical properties of α-RDX. Moreover, we find that the electrons of α-RDX become more active under higher pressure by comparing the curves of DOS under different pressure. Furthermore, the anisotropy of optical properties under different pressures has been shown.  相似文献   

13.
范靖  包括  段德芳  汪连城  刘冰冰  崔田 《中国物理 B》2012,21(8):86104-086104
The previously proposed theoretical and experimental structures,bond characterization,and compressibility of Mg(BH 4) 2 in a pressure range from 0 to 10 GPa are studied by ab initio density-functional calculations.It is found that the ambient pressure phases of meta-stable I4 1 /amd and unstable P-3m1 proposed recently are extra stable and cannot decompose under high pressure.Enthalpy calculation indicates that the ground state of F 222 structure proposed by Zhou et al.[2009 Phys.Rev.B 79 212102] will transfer to I4 1 /amd at 0.7 GPa,and then to a P-3m1 structure at 6.3 GPa.The experimental P 6 1 22 structure(α-phase) transfers to I4 1 /amd at 1.2 GPa.Furthermore,both I4 1 /amd and P-3m1 can exist as high volumetric hydrogen density phases at low pressure.Their theoretical volumetric hydrogen densities reach 146.351 g H 2 /L and 134.028 g H 2 /L at ambient pressure,respectively.The calculated phonon dispersion curve shows that the I4 1 /amd phase is dynamically stable in a pressure range from 0 to 4 GPa and the P-3m1 phase is stable at pressures higher than 1 GPa.So the I4 1 /amd phase may be synthesized under high pressure and retained to ambient pressure.Energy band structures show that they are both always ionic crystalline and insulating with a band-gap of about 5 eV in this pressure range.In addition,they each have an anisotropic compressibility.The c axis of these structures is easy to compress.Especially,the c axis and volume of P-3m1 phase are extraordinarily compressible,showing that compression along the c axis can increase the volumetric hydrogen content for both I4 1 /amd and P-3m1 structures.  相似文献   

14.
Abstract

Amorphous, ferromagnetic, invar like, Fe60 Mn20 B20 alloy has been investigated. Two kinds of experiments were carried out for this alloy. The first, using high pressure technique, revealed the influence of pressure on B(H) dependencies within the wide range of temperature under pressure of 0.5 GPa. From the magnetization curves obtained during these experiments the decrease of spontaneous magnetization caused by applied pressure 0.5 GPa at temperature -180°C has been calculated at the rate about 7 10?11T/Pa.

In the second kind of experiments the measurements of volume magnetostriction up to 720 kA/m magnetic field intensity have been done. Volume magnetostriction coefficient at temperature 77.4 K has been determined to be about 2 10?11 [A/m]?1.  相似文献   

15.
Abstract

A phase transition from Ca(OH)2 I (portlandite) to Ca(OH)2 II at high pressure and temperature has been confirmed, using in situ x-ray diffraction in a multianvil high pressure device (DIA). The structure was determined at 9.5 GPa and room temperature from data collected after heating the sample at 300°C at 7.2 GPa in a diamond anvil cell. Both the Le Bail fit and preliminary Rietveld refinement suggest that the new phase, which reverts to Ca(OH), I during pressure release, has a structure related to that of baddeleyite (ZrO1); it is monoclinic (P21/c) with a= 4.887(2), b= 5.834(2), c = 5.587(2), β = 99.74(2)°. The coordination number of Ca increases from six to seven (5 + 2) across the transition. At 500°C, the phase boundary is bracketed at 5.7 ± 0.4 GPa by reversal experiments performed in the DIA.  相似文献   

16.
Abstract

Energy Dispersive X-ray Diffraction (EDXD) was performed at room temperature to gather structural data on CaS between approximately 1.7 GPa to nearly 150GPa. In these experiments, CaS retained the B1 structure up to approximately 40 GPa above which it began to transform to the B2 structure. The B2 structure remained stable to the highest pressure reached, 149 GPa, where the relative volume V/V0 was 0.490. Previous studies on CaS extended only up to 52 GPa, which is barely 10 GPa after the B1 phase changes to the B2 structure. Thus it was not possible to accurately extrapolate the equation of state (EOS) for the B2 phase region to significantly higher pressures. In the present study EOS data for CaS was collected to 150 GPa and no other structural change was observed. EOS parameters for the B1 and B2 phase regions agree well with values reported in the literature.  相似文献   

17.
Abstract

A structure of ND4Br has been studied at pressures up to 9 GPa by means of time-of-flight neutron diffraction. A phase transition to the high pressure phase V was observed at P=8·2(5)GPa. It was found that the phase V has a tetragonal structure with an antiparallel ordering of ammonium ions, space group P4/nmm which is in strong resemblance with low temperature modification ND4Br(III). Deuterium positional parameter as a function of pressure was obtained.  相似文献   

18.
Abstract

The optical absorption of the diluted magnetic semiconductor Zn1?xCOxSe (x = 0.02) has been measured at room temperature under hydrostatic pressure up to 14GPa in a membrane diamond-anvil cell. We found two absorption features: (i) an absorption structure in the energy range 1.6?1.8eV, with a negligible pressure shift (i.e., 0.45 ± 0.05 meV/GPa) which we have identified as the Co2+(3d7) internal transition 4A2(F)→+4T1(P) and (ii) an onset in the energy range 2?2.7eV which redshifts with pressure (?8.1±0.6meV/GPa). We have attributed such absorption edge to charge transfer between the ZnSe valence band and the Co2+(3d7) levels.  相似文献   

19.

The full profile refinement of the structure of the calcium-ferrite type NaAlSiO 4 was carried out at pressures up to 40 GPa. This high-pressure modification of NaAlSiO 4 is known to be stable at least to 75 GPa and 2450 K that corresponds to a middle part of the Earth's lower mantle. A zero-pressure unit cell volume V 0 =36.58(2) cm 3 /mol was obtained from a sample synthesized from natural albite. In situ pressure-volume data (with found V 0 ) was fitted to the Birch-Murnaghan equation of state, and it yielded the bulk modulus equal to 220(1) GPa and its pressure derivative equal to 4.1(1).  相似文献   

20.
Abstract

Luminescence spectra from Eu3 + ion in B-type (monoclinic) 2O3 powder have been recorded at room temperature as a function of pressure using a diamond anvil cell. Changes in the spectral pattern of the Eu3 + ion emission at about 4 GPa indicated that a phase transition to the A-type (hexagonal) structure had taken place. Upon release of the applied pressure, the B-type structure was regained with hysteresis. The spectral shifts with pressure have been used to study the effect of pressure on the spin-orbit interaction of the 4f electrons in the Ed + ion. The relationship between the relative changes in the spin-orbit coupling constant, ζ4f, and the volume accompanying the phase transition is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号