首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report in situ x-ray diffraction studies in tetracyanoethylene (TCNE) at high pressure using diamond anvil cell (DAC) at Elettra synchrotron source, Trieste, Italy. Experiments were performed with both the polymorphic phases (monoclinic and cubic) of TCNE as the starting phase. While starting with monoclinic (the high temperature stable) TCNE, it was found that the Bragg peaks get broadened with increase of pressure and above 5 GPa only few broad peaks remained to be observed. On release of pressure from 6.4 GPa, when the sample started turning black, the diffraction pattern at ambient pressure corresponds to cubic, the other crystalline phase of TCNE. Results reconfirm the monoclinic to cubic transition at high pressure but via an intermediate ‘disordered’ phase. This settles a number of conflicting issues. TCNE represents only system, which undergoes transition from one crystalline to another crystalline phase via a ‘disordered’ metastable phase at high pressure. When the starting phase was cubic (the low temperature stable) no apparent phase transition was observed up to 10.8 GPa.  相似文献   

2.
Optical microscopy and atomic force microscopy were used to study a novel roughness-induced wrinkling instability in thin-film bilayers of poly(ethylene oxide) (PEO) and polystyrene (PS). The observed wrinkling morphology is manifested as a periodic undulation at the surface of the samples and occurs when the bilayers are heated above the melting temperature of the semi crystalline PEO (Tm = 63 ) layer. During the wrinkling of the glassy PS capping layers the system selects a characteristic wavelength that has the largest amplitude growth rate. This initial wavelength is shown to increase monotonically with increasing thickness of the PEO layer. We also show that for a given PEO film thickness, the wavelength can be varied independently by changing the thickness of the PS capping layers. A model based upon a simple linear stability analysis was developed to analyse the data collected for the PS and PEO film thickness dependences of the fastest growing wavelength in the system. The predictions of this theory are that the strain induced in the PS layer caused by changes in the area of the PEO/PS interface during the melting of the PEO are sufficient to drive the wrinkling instability. A consideration of the mechanical response of the PEO and PS layers to the deformations caused by wrinkling then allows us to use this simple theory to predict the fastest growing wavelength in the system.  相似文献   

3.
用熔融共混法制备了不同组分的聚苯乙烯(PS)与聚氧化乙烯(PEO)共混物(PS/PEO).在玻璃转变温度Tg及其以上温区,利用相对能量耗散技术研究了该共混物的动力学行为.结果发现,在能量耗散-温度曲线上出现了两个弛豫型的耗散峰(α峰和α′峰).分析表明,α峰是与PS玻璃转变有关的特征耗散峰; α′峰则对应于一种“液-液转变”.两者的弛豫时间τ都不满足Arrhenius关系.此外,还研究了组分对这两个弛豫型耗散峰的影响,并给予了定性的解释. 关键词: 相对能量耗散 玻璃转变 力学弛豫  相似文献   

4.
The self-organization of the double hydrophilic triblock copolymer poly(ethylene oxide)-b-poly(2-vinylpyridine)-b-poly(ethylene oxide), PEO-b-P2VP-b-PEO, was investigated in dilute aqueous solution under several experimental conditions using turbidimetry, as well as static and dynamic light scattering. As a result of the temperature-sensitive properties of the end PEO blocks and the p H-responsive properties of the middle P2VP block, the formation of large star-like micellar nanostructures is observed at high p H, while at low p H, but in the presence of salt and at high temperature, flower-like micelles are formed. Moreover, the viscosimetric and dynamic light scattering studies at low p H revealed that micelle-like nanostructures are formed upon mixing the triblock copolymer with poly(acrylic acid), PAA, due to hydrogen bonding interpolymer complexation.  相似文献   

5.
Abstract

Phase transitions of orthorhombic sulfur were investigated above 10 GPa by Raman spectroscopy using red light excitation. Transitions into several phases that have been reported in previous studies using green light excitation, are confirmed. The phase behaviour is observed to depend strongly on the preparation method. In the presence of a pressure transmitting medium (methanol/ethanol, 4:1), a sequence of phases α-S8 → [intermediate phase (“ip”) + S6] → [S6 + high pressure-low temperature phase (“hplt”)] is described and characterized. Without the use of a pressure transmitting medium, the phase sequence α-S8 → [“ip” + “hplt”] + “hplt” is observed. In addition, contributions of amorphous sulfur are detected around 10 GPa, i.e. at pressures below the transformation of α-S8 into the above-mentioned phases. Characteristic Raman spectra of the different phases are extracted and documented over a wide pressure range.  相似文献   

6.
The ionic conductivity of poly(ethylene oxide) and poly(propylene oxide) in pure solution form, individually complexed with salts of Na+ and Li+, with and without plasticizer (propylene carbonate) and in blended form with individual salt with and without plasticizer, was studied. The conductance measurements were made at various concentrations of salt polymer complexes and at different temperatures. The effects of temperature and plasticizer concentration were measured from Arrhenius conductance plots. It is shown that the addition of salts in pure PEO increases conductance many times. The plasticizer has also same effect. The blending of PEO with PPO gives enhanced conductivity as compared to pure PEO. The activation energies were determined for all the systems which gave higher values for pure PEO and the value decreases with the addition of Li and Na salts and further decreases with the addition of plasticizer. The blending has also lowered the activation energy values which mean that incorporation of PPO in PEO has decreased crystallinity and the amorphous region has increased the local mobility of polymer chains resulting in lower activation energies.  相似文献   

7.
The pressure-induced phase transitions were studied in ZnTe by the thermoelectric power (S) technique. For the high-pressure trigonal phase P3121 cinnabar the large thermopower values S≈+400 correspond to semiconductor hole conductivity. During a transition into the orthorhombic structure Cmcm the value of S dropped by 40-50 times indicating metallic hole conductivity, like in the high pressure phases of other chalcogenides of II Group (HgSe, HgTe, CdTe) with Cmcm structure. In a transient region between the trigonal and orthorhombic phase (especially under decreasing pressure) a novel phase has been observed with a negative value of S. By analogy with other Zn and Cd chalcogenides whose NaCl phases have an electron type of conductivity the phase observed may have a NaCl structure.  相似文献   

8.
Phase transitions in cerium have been studied by the electrical resistance method in the 15-GPa pressure range at high temperatures. At pressures above 10 GPa, cerium represents a mixture of stable and metastable phases, the composition of this mixture being dependent on the trajectory in the P-T plane that leads to a given point. Transformations in both stable and metastable components of the mixture proceeding rather independently display a complicated picture of phase transitions. It was assumed that only the α (fcc) and α′ (α-U) phases are stable at pressures above the well-known γ-α transition, the other phases being metastable. The proposed bow-shaped equilibrium phase diagram includes an extremely wide hysteresis region, where stable and metastable phases can coexist. The fcc α phase alone survives upon heating above 50°C at 15 GPa.  相似文献   

9.
PEO sulfonic acids with Mw in the range 446–4246 have been prepared. Mechanically stable polyelectrolyte films containing high molar mass PEO and PEO sulfonic acids were prepared. The PEO sulfonic acids and the polyelectrolyte films were examined by thermal analysis, optical microscopy, Raman spectroscopy, and impedance spectroscopy. While the low molar mass PEO sulfonic acids were completely amorphous, sulfonic acids with Mw ≥ 1246 show considerable crystallinity. Experimental data indicate aggregation of the low molar mass PEO sulfonic acids through hydrogen bonds. The PEO sulfonic acids are miscible with high molar mass PEO and form free standing polyelectrolyte films. The PEO sulfonic acids with the lowest molar masses have a plasticizing effect on the high molar mass PEO. The crystallinity of the films decreased as the concentration of sulfonic acid increased. The films are stable at RH ≤ 75%, and for some mixtures protonic conductivities of 10−3 S cm−1 at room temperature were reached.  相似文献   

10.
The X-ray excited Auger spectra of polyethylene and poly(ethylene oxide) have been corrected for Auger electron energy losses due to interactions with the solid and compared to the corresponding spectra of gas phase molecular analogs. The corrected polyethylene spectrum is an extrapolation of trends observed in the spectra of gas phase alkanes from CH4 through C6H14. The O(KVV) spectrum of poly(ethylene oxide) is similar to that of methyl ether, consistent with similar nearest neighbor environments for the oxygen atoms in the two materials. In contrast, the C(KVV) spectrum of poly(ethylene oxide), a material which contains C-C bonds, is better approximated by the spectrum of ethane (H3C-CH3). A comparison of the polyethylene Auger spectrum with the spectra of the normal alkanes and with a self-fold of its X-ray excited valence band photoemission (single hole) spectrum indicates the presence of correlated two-hole final states in the case of polyethylene.  相似文献   

11.
Single-molecule single crystals were prepared from two fractions of poly(ethylene oxide) (PEO) with narrow molar mass distribution and an equimolar mixture of the two fractions. It was proven that the molar mass distribution of the single-molecule single crystals from the mixed sample corresponds to an addition of those of the pure fractions. Well-shaped crystals were obtained after isothermal crystallization or on annealing. A variety of morphologies typical for multimolecule single crystals of PEO were found and are described on the basis of the various known modes of twinning. The results are in agreement with the known unit cell of PEO.  相似文献   

12.
Crystalline 2,5-di(4-nitrophenyl)-1,3,4-oxadiazole (DNO) has been investigated at pressures up to 5 GPa using Raman and optical spectroscopy as well as energy dispersive X-ray techniques. At ambient pressure DNO shows an orthorhombic unit cell (a=0.5448 nm, b=1.2758 nm, c=1.9720 nm, density 1.513 g cm−3) with an appropriate space group Pbcn. From Raman spectroscopic investigations three phase transitions have been detected at 0.88, 1.28, and 2.2 GPa, respectively. These transitions have also been confirmed by absorption spectroscopy and X-ray measurements. Molecular modeling simulations have considerably contributed to the interpretation of the X-ray diffractograms. In general, the nearly flat structure of the oxadiazole molecule is preserved during the transitions. All subsequent structures are characterized by a stack-like arrangement of the DNO molecules. Only the mutual position of these molecular stacks changes due to the transformations so that this process may be described as a topotactical reaction. Phases II and III show a monoclinic symmetry with space group P21/c with cell parameters a=1.990 nm, b=0.500 nm, c=1.240 nm, β=91.7°, density 1.681 g cm−3 (phase II, determined at 1.1 GPa) and a=1.890 nm, b=0.510 nm, c=1.242 nm, β=89.0°, density 1.733 g cm−3 (phase III, determined at 2.0 GPa), respectively. The high-pressure phase IV stable at least up to 5 GPa shows again an orthorhombic structure with space group Pccn with corresponding cell parameters at 2.9 GPa: a=0.465 nm, b=1.920 nm, c=1.230 nm and density 1.857 g cm−3. For the first phase a blue pressure shift of the onset of absorption by about 0.032 eV GPa−1 has been observed that may be explained by pressure influences on the electronic conjugation of the molecule. In the intermediate and high-pressure phases II–IV the onset of absorption shifts to increased wavelengths due to larger intermolecular interactions and enhanced excitation delocalization with decreasing intermolecular spacing.  相似文献   

13.
In order to obtain dense and stable poly(ethylene oxide) (PEO) layers for reducing protein adsorption, polystyrene (PS) plates were first soaked in chloroform/methanol mixed organic solvent to swell the polymer. The swelled PS plates were then immersed into Pluronic F127 (amphiphilic block copolymer) aqueous solution, Pluronic F127 molecules were adsorbed favorably on the swelled PS surfaces. After evaporation of organic solvent, the adsorbed Pluronic F127 molecules were trapped and anchored permanently on the PS substrates. The dense and stable PEO layers anchored on the PS surfaces can effectively inhibit protein adsorption.  相似文献   

14.
Polyethylene oxide (PEO) containing a lithium salt (e.g., LiI) serves as a solid polymer electrolyte (SPE) in thin-film batteries and its ionic conductivity is a key parameter of their performance. We model and simulate Li+ ion conduction in a single PEO molecule. Our simplified stochastic model of ionic motion is based on an analogy between protein channels of biological membranes that conduct Na+, K+, and other ions, and the PEO helical chain that conducts Li+ ions. In contrast with protein channels and salt solutions, the PEO is both the channel and the solvent for the lithium salt (e.g., LiI). The mobile ions are treated as charged spherical Brownian particles. We simulate Smoluchowski dynamics in channels with a radius of ca. 0.1 nm and study the effect of stretching and temperature on ion conductivity. We assume that each helix (molecule) forms a random angle with the axis between these electrodes and the polymeric film is composed of many uniformly distributed oriented boxes that include molecules with the same direction. We further assume that mechanical stretching aligns the molecular structures in each box along the axis of stretching (intra-box alignment). Our model thus predicts the PEO conductivity as a function of the stretching, the salt concentration and the temperature. The computed enhancement of the ionic conductivity in the stretch direction is in good agreement with experimental results. The simulation results are also in qualitative agreement with recent theoretical and experimental results.  相似文献   

15.
Polymer solid electrolytes from a PEO-NaI system were mixed with Nasicon and Al2O3 powders. As a result an increase of ionic conductivity exceeding 10–1 S/cm at room temperature was observed for both cases. This increase was due to a higher concentration of amorphous phase which resulted apparently from a higher nucleation rate during the solidification process. The samples were studied using impedance spectroscopy, X-ray diffraction, electron microscopy, NMR, and other techniques.  相似文献   

16.
Polyethylene oxide (PEO) containing a lithium salt (e.g., LiI) serves as a solid polymer electrolyte (SPE) in thin-film batteries and its ionic conductivity is a key parameter of their performance. We model and simulate Li+ ion conduction in a single PEO molecule. Our simplified stochastic model of ionic motion is based on an analogy between protein channels of biological membranes that conduct Na+, K+, and other ions, and the PEO helical chain that conducts Li+ ions. In contrast with protein channels and salt solutions, the PEO is both the channel and the solvent for the lithium salt (e.g., LiI). The mobile ions are treated as charged spherical Brownian particles. We simulate Smoluchowski dynamics in channels with a radius of ca. 0.1 nm and study the effect of stretching and temperature on ion conductivity. We assume that each helix (molecule) forms a random angle with the axis between these electrodes and the polymeric film is composed of many uniformly distributed oriented boxes that include molecules with the same direction. We further assume that mechanical stretching aligns the molecular structures in each box along the axis of stretching (intra-box alignment). Our model thus predicts the PEO conductivity as a function of the stretching, the salt concentration and the temperature. The computed enhancement of the ionic conductivity in the stretch direction is in good agreement with experimental results. The simulation results are also in qualitative agreement with recent theoretical and experimental results.  相似文献   

17.
Summary Electrical-impedance measurements have been made in the frequency range 5 Hz to10 MHz in pure poly(ethylene oxide) having a molecular weight of 600 000 from 254 K nearly up to the melting point of the crystalline phase (about 330 K). As the temperature approaches the melting point there are large increases in the realε′ and imaginaryε″ parts of the dielectric constant. The frequency dependence ofε′ is characterized by a primary-relaxation process, whose frequency increases with increasing temperature as a consequence of decrease of the average structural relaxation time. There is strong evidence that this low-frequency dispersion rises mainly from the diffusive transport of localised charge carriers rather than a purely orientation relaxation process. In addition the effects of hydrostatic pressure (0–25 Gpa) on the frequency dependences of the realε′ and imaginaryε″ parts of the dielectric constant have been measured in the same temperature range. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

18.
19.
20.
The melting curve is plotted for uranium dioxide with fluorite structure in a pressure range from ?2.5 to +100 GPa. This curve has a peak at the point 3348 K, 6 GPa, and has a negative derivative at high pressures. The pressure corresponding to a polymorphic transition of uranium dioxide (37 GPa) at a temperature of 1015 K is determined. The slope of the equilibrium curve of the polymorphic transition in UO2 in the temperature range 300–1000 K is ? 56 K/GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号