首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

High-pressure structural transition and volume compression for thallium were investigated to 45 GPa in a diamond anvil cell using the angular dispersive X-ray diffraction technique. Except for the known polymorphic transition at 3.7 GPa, no other structural change was observed in this pressure range. The equation of state of the high pressure phase has been obtained: its initial bulk modulus, B0 = 33.1 GPa, is lower by 10% than that of the hexagonal phase at normal pressure.  相似文献   

2.
Abstract

The measurements of thermoelectric power S and resistance p at high pressure synthetic diamond anvils cell were performed for (PbS)0·59TiS2 and TiS2 crystals. The phase transition was found at P?;2GPa accompanied by descend of ρ and |S| for (PbS)o·59TiS2. This transition is connected with structural change of PbS fragment from pseudocubic cell to orthorombic one and as consequence, with change of the electron concentration in Tis2-layers. From the electronic structure calculations for TiS2, the semiconductor-metal transition occurs at pressure P ≥ 4 GPa. Experimentally at this pressure range the decrease of ρ(P) was observed for (PbS)0·59TiS2 crystals.  相似文献   

3.
Abstract

The structural behaviour of Pm metal has been investigated up to 60 GPa of pressure using a Diamond Anvil Cell (DAC) and the energy dispersive X-ray diffraction technique. The room temperature/pressure structural form of Pm is dhcp and it transforms to a fcc phase by 10 GPa. This cubic phase of the metal converts by 18 GPa to a third phase, which has frequently been referred to as representing a distorted fcc structure. This latter form of Pm was retained up to 60 GPa, the maximum pressure studied, but subtle changes in the X-ray spectra between 50 and 60 GPa hinted that an additional structural change could be forthcoming at higher pressures. From the experimental data a bulk modulus (B0) of 38 GPa and a B0′ constant of 1.5 were calculated using the Birch equation. This modulus for Pm is in accord with the moduli reported for the neighboring lanthanide metals.  相似文献   

4.
Abstract

Energy Dispersive X-ray Diffraction (EDXD) was performed at room temperature to gather structural data on CaS between approximately 1.7 GPa to nearly 150GPa. In these experiments, CaS retained the B1 structure up to approximately 40 GPa above which it began to transform to the B2 structure. The B2 structure remained stable to the highest pressure reached, 149 GPa, where the relative volume V/V0 was 0.490. Previous studies on CaS extended only up to 52 GPa, which is barely 10 GPa after the B1 phase changes to the B2 structure. Thus it was not possible to accurately extrapolate the equation of state (EOS) for the B2 phase region to significantly higher pressures. In the present study EOS data for CaS was collected to 150 GPa and no other structural change was observed. EOS parameters for the B1 and B2 phase regions agree well with values reported in the literature.  相似文献   

5.
Abstract

The high-pressure crystal structures of the compounds UX, where X = N, P, As and Sb, have been studied using X-ray diffraction in the pressure range up to about 60 GPa Rhornbohedral distortions are observed for UN and Up above 29 GPa and lO GPa, respectively. In Up a further transformation to an orthorhombic phase occurs at 28 GPa. UAs and USb transform to the CsCl structure at 20 GPa and 9 GPa, respectively. The latter transformations show a considerable hysteresis when the pressure is released. The scaling behaviour of the bulk modulus has been studied. It is confirmed that a log-log plot of bulk modulus versus specific volume for the cubic phases gives a straight line with a slope near ? 5/3.  相似文献   

6.
Abstract

Copper oxide has been studied at high pressure up to 50 GPa. A monoclinic structure was compatible with the measurements at all pressures, and no phase change was observed. A bulk modulus, B0, = 98 GPa, and its pressure derivative B′0 = 5.6 was obtained.  相似文献   

7.
High pressure experiments were performed on D2O ice VII using a diamond anvil cell in a pressure range of 2.0–60 GPa at room temperature. In situ X-ray diffractometry revealed that the structure changed from cubic to a low symmetry phase at approximately 11 GPa, based on the observed splitting of the cubic structure's diffraction lines. Heating treatments were added for the samples to reduce the effect of non-hydrostatic stress. After heating, splitting diffraction lines became sharp and the splitting was clearly retained. Although symmetry and structure of the transformed phase have not been determined, change in volumes vs. pressure was calculated, assuming that the low-symmetry phase had a tetragonal structure. The bulk modulus calculated for the low-symmetry phase was slightly larger than that for the cubic structure. In Raman spectroscopy, the squared vibrational frequencies of ν1 (A1g), as a function of pressure, showed a clear change in the slope at 11–13 GPa. The full width at half maxima of the O-D modes decreased with increasing pressure, reaching a minimum at approximately 11 GPa, and increased again above 11 GPa. These results evidently support the existence of phase change at approximately 11 GPa for D2O ice VII.  相似文献   

8.
Abstract

Energy-dispersive x-ray diffraction using synchrotron radiation was carried out on α-cristobalite to 3 GPa and 350°C in a cubic anvil press. A cascading structural phase transition occurred beyond 0.61 GPa at room temperature. The transition was accompanied by a splitting of most of the a-cristobalite reflections: the (111) reflection at 0.61 GPa through the (211) reflections at 2.13 GPa, with many other lines between. The pressure of this transition decreased with increasing temperature.  相似文献   

9.
Abstract

The effect of high hydrostatic pressure, up to 12GPa, on the intramolecular phonon frequencies and the material stability of the two-dimensional tetragonal Cm polymer has been studied by means of Raman spectroscopy in the spectral range of the radial intramolecular modes (200-800cm?1). A number of new Raman modes appear in the spectrum for pressures ~ 1.4 and ~ 5.0 GPa. The pressure coefficients for the majority of the phonon modes exhibit changes to lower values at P=4.0 GPa, which may be related to a structural modification of the 2D polymer to a more isotropic phase. The peculiarities observed in the Raman spectra are reversible and the material is stable in the pressure region investigated.  相似文献   

10.
Abstract

The phase transitions and dehydration of chalcanthite were investigated by electrical conductivity and Raman spectroscopy at 1.0–24.0?GPa and 293–673?K in a diamond anvil cell. At ambient temperature, two secondary phase transitions were observed according to discontinuous changes in the slope of Raman shifts, full width at half maximum and electrical conductivities at ~7.3 and ~10.3?GPa. The dehydration temperatures were determined by the splitting of Raman peaks and changes in electrical conductivity as ~350 and ~500?K at respective ~3.0 and ~6.0?GPa. A positive relationship for chalcanthite between dehydration temperature and pressure is established.  相似文献   

11.
In the pressure range 14–35 GPa we have measured the resistance of shock-compressed nickel. Its abrupt decrease at; ∼23 GPa is noted, and the boundaries of the existence of this anomaly (±1 GPa) are determined. It is shown that the observed anomaly can be linked with a structural rearrangement of the electron shells of nickel. Fiz. Tverd. Tela (St. Petersburg) 41, 369–371 (March 1999)  相似文献   

12.
Abstract

The pressure dependence of thermal EMF and the resistivity-temperature dependence of CsI has been measured at pressures 20-50 GPa. In CsI non-monotonous change of resistivity, thermal EMF and activation energy of charge carriers has been observed at pressures above 40 GPa. The sign of thermal EMF corresponds to the electron conductivity. At pressures below 47 GPa the resistivity-temperature dependence is of the type characteristic of non-degenerate semiconductors, at pressure above 49 GPa it is characteristic of degenerate semiconductors (or metals). The observed properties are connected probably with the continuous distortion of B2 to an hcp-like phase.  相似文献   

13.
S. Kurita  S. Ohta  T. Sekiya 《高压研究》2013,33(2):319-323

Pressure-induced phase transition of anatase titanium dioxide was investigated by Raman, absorption spectroscopy and X-ray diffraction. The change in Raman and absorption spectra with pressure revealed that the transition from anatase to high pressure phase with f -PbO 2 structure (TiO 2 -II) occurred in the pressure range of 4.0-4.6 GPa for a single crystal. The X-ray powder diffraction patterns indicate the presence of superstructural lattice of anatase at pressures more than 3 GPa. The superstructure of anatase disappears on the release of the pressure. A sluggish transition to the high pressure phase is also observed. The anatase coexists with the high pressure phase at 5.2 GPa. The difference in the results between optical spectroscopy (single crystal) and X-ray diffraction (powder) will be due to crystalinity of the sample.  相似文献   

14.

Specific electroresistance and Hall coefficient on oriented ZnAs 2 and CdAs 2 single crystals in the region of room temperatures at hydrostatic pressure up to 9 GPa were measured. In p -ZnAs 2 specific electroresistance falls for one order of magnitude with the increase of pressure, and Hall coefficient falls for two orders in magnitude, and at P =7 GPa specific electroresistance and Hall coefficient come out to a saturation. Under mentioned conditions the phase transition in investigated p -ZnAs 2 samples was not observed, in all probability it occurs under the pressure P >10 GPa. Two groups of n -CdAs 2 samples oriented on [1 0 0] and [0 0 1] directions were investigated. The reversible structural phase transition was observed in investigated n -CdAs 2 samples at P =5.5 GPa from the dependencies of specific electroresistance 𝜌 ( P ) and Hall coefficient R H ( P ). On the basis of the values of concentrations and mobilities before and after phase transition a conclusion was made that semiconductor-semiconductor transition takes place in n -CdAs 2 . Maxima that earlier weren't observed, were detected on dependencies 𝜌 ( P ), R H ( P ) at P =1.8 GPa and at P =3 GPa.  相似文献   

15.

Pressure-induced structural changes in solid krypton (Kr) and xenon (Xe) have been studied using angle dispersive X-ray diffraction in a diamond-anvil cell (DAC) up to 50 GPa. The analysis of the results shows that in solid Kr (Xe) the phase transition from fcc to hcp starts below 3.2 GPa (1.5 GPa). Albeit the hcp/fcc ratio increases under pressure, both phases coexist up to the highest pressure reached in this study. Room temperature (RT) equations of state (EOS) are determined.  相似文献   

16.
Abstract

High pressure and temperature structural changes for RDX were investigated to 7.0 GPa and 570 K in a diamond anvil cell apparatus using FTIR absorption, optical microscopy, and energy-dispersive powder x-ray diffraction techniques. Three distinct solid phases were observed. The effects of pressure on the thermal decomposition kinetics as a function of RDX pressure were investigated using an infrared absorption technique. Solid phase I was found to have a pressure enhanced reaction rate with an energy and volume of activation of 51 Kcal/mole and -5.6 cc/mole respectively. Solid II was not observed to react and the observed reaction rate of Solid III decreased with increasing pressure.  相似文献   

17.
Reversible amorphization and memory effects of both dense and open frameworks have received a great attention due to their prospective industrial applications. In this paper, the results of a computational study related to phase transition and memory effects in AlPO4-5 nanoporous material at high external pressure is presented. The behavior of the AlPO4-5 unit cell at high external pressures was studied by energy minimization techniques using classical potentials. A combination of interatomic potentials was used to describe the crystalline structure of the aluminophosphate. According to simulation's result a decrease of crystalline order is observed at a pressure about 3.5 GPa. The behavior of the simulated infrared spectra of compressed structures is an unambiguous evidence of structural disorder. Also, an abrupt change in the slope of the unit cell volume vs. pressure curve was obtained. At P≤3.5 GPa the process was found reversible. Contrary to what has been reported in other aluminosilicate systems the final crystalline state of AlPO4-5 at the highest simulated pressure was not amorphous. According to our knowledge this is the first evidence of a reversible first-order crystal-crystal phase transition in AlPO- family materials. This result could be important in future industrial and catalytic applications of these materials.  相似文献   

18.

The stability under pressure of the charge-density-wave in the insulating phase of YNiO3 was studied by infrared spectroscopy and synchrotron diffraction techniques up to 23 GPa. YNiO3 undergoes a pressure induced insulator-to-metal transition at approximately 15 GPa in the pressure domain, coinciding with the melting of the charge ordered phase. The optical band gap is non-zero above 15 GPa, as is the case above the reported insulator-metal transition (585 K) in the temperature-domain. There is a similarity between the infrared spectral profile around 15 GPa and the infrared spectral profile above ca. 700 K. We conclude therefore that the pressure-induced structural/electronic transition induced around 15 GPa, probably having an as-yet unreported counterpart in the temperature domain at a temperature in excess of 585 K.  相似文献   

19.
Raman spectra of MgB2 ceramic samples were measured as a function of pressure up to 32 GPa at room temperature. The spectrum at normal conditions contains a very broad peak at ∼590 cm−1 related to the E 2g phonon mode. The frequency of this mode exhibits a strong linear dependence in the pressure region from 5 to 18 GPa, whereas, beyond this region, the slope of the pressure-induced frequency shift is reduced by about a factor of two. The pressure dependence of the phonon mode up to ∼5 GPa exhibits a change in the slope, as well as a “hysteresis” effect in the frequency vs. pressure behavior. These singularities in the E 2g mode behavior under pressure support the suggestion that MgB2 may undergo a pressure-induced topological electronic transition.  相似文献   

20.
Abstract

Effect of high pressure on the crystal structure of rhombohedral NaNO3 was investigated by X-ray diffraction of single crystals mounted in a miniature diamond-anvil cell on synchrotron radiation source. Diffraction intensity measurements were made at three pressures across a suggested transition pressure 4.3 GPa. No change was observed in an overall distribution of reflections in the reciprocal space with increasing pressure, but there was a systematic variation in diffraction intensity for particular groups of reflections. An analysis based on the structure factor calculation showed that a structure change induced by pressure is mainly a rotation of the nitrate groups in the alternate layers along the threefold axis in opposite directions. Least-squares refinement of the atomic positional parameters yielded the angle of the rotation to be 4.3 and 7.0 deg at pressures of 4.4 and 5.0 GPa, respectively. It has also been shown that the positions of the sodium and nitrogen atoms are slightly displaced along the axis, resulting in the formation of dipoles in the high pressure phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号