首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline FeS2 cathode material of lithium cell was synthesized from cheap materials of FeSO4, Na2S2O3, and sulfur by a hydrothermal process. The scanning electron microscopy analysis showed the obtained material was nano-sized, about 500 nm. The X-ray powder diffraction analysis showed that the synthetic FeS2 material had two phases of the crystalline structure, pyrite and marcasite. The phase of marcasite seems to have no negative effect on the electrochemical performance of the material. The synthetic FeS2 showed a significant improvement of electrochemical performance for Li/FeS2 cells.  相似文献   

2.
H. G?ktepe  H. ?ahan  ?. Patat  A. ülgen 《Ionics》2009,15(2):233-239
To improve the cycle performance of spinel LiMn2O4 as the cathode of 4-V-class lithium secondary batteries, spinel phases LiM x Mn2 − x O4 (M=Li, Fe, Co; x = 0, 0.05, 0.1, 0.15) and LiFe0.05M y Mn1.95 − y O4 (M=Li, Al, Ni, Co; y = 0.05, 0.1) were successfully prepared using the sol–gel method. The spinel materials were characterized by powder X-ray diffraction (XRD), elemental analysis, and scanning electron microscopy. All the samples exhibited a pure cubic spinel structure without any impurities in the XRD patterns. Electrochemical studies were carried out using the Li|LiM x Mn2 − x O4 (M=Li, Fe, Co; x = 0, 0.05, 0.1, 0.15) and LiFe0.05M y Mn1.95 − y O4 (M=Li, Al, Ni, Co; y = 0.05, 0.1) cells. These cathodes were more tolerant to repeated lithium extraction and insertion than a standard LiMn2O4 spinel electrode in spite of a small reduction in the initial capacity. The improvement in cycling performance is attributed to the stabilization in the spinel structure by the doped metal cations.  相似文献   

3.
LiMnBO3 with enhanced powder density was successfully synthesized by a commercially available spray-drying process. A monoclinic-LiMnBO3 single phase was experimentally substantiated by an X-ray diffractometer with crystallinity investigated by Rietveld refinement method (Bragg R-factor and RF-factor <10). The dense LiMnBO3 powder prepared by the spray drying process showed spherical morphology. The electrochemical property of LiMnBO3 was extensively investigated, positively revealing that 0.27 Li+ (Li0.27MnBO3) was stoichiometrically extracted from the host LiMnBO3 material at first cycle.  相似文献   

4.
Spinel LiMn2O4 and LiMg0.2Mn1.8O4 have been synthesized by a soft chemistry method using citric acid as the chelating agent and acryl amide as the gelling agent. This technique offers better homogeneity, preferred surface morphology, reduced heat treatment conditions, sub-micron-sized particles, and better crystallinity. The synthesized spinel materials are characterized by X-ray diffraction, scanning electron microscopy, cyclic voltammetry, and charge–discharge studies.  相似文献   

5.
《Current Applied Physics》2015,15(4):429-434
In this study, the effects of the polyvinylidene fluoride (PVdF) binder on the Mn dissolution behavior and electrochemical performances of LiMn2O4 (LMO) electrodes are investigated. It is found that increasing the PVdF content (3, 5, 7, and 10 wt.%) leads to reduced Mn dissolution, and thus superior cycle performance at elevated temperature (60 °C). This can be ascribed to increased binder coverage on the LMO surface, as evidenced by X-ray photoelectron spectroscopy measurements, which acts a role as a passivation layer for Mn dissolution. The rate capability of the LMO electrode is hardly deteriorated as the PVdF content increases, despite the increasing surface coverage. Electrochemical impedance measurements reveal that the LMO electrode with higher binder loading exhibits lower electrode impedance, which is suggested to be due to enhanced electronic passage through the composite LMO electrode.  相似文献   

6.
An attempt has been made to synthesize LiMn2O4 spinel and boron substituted LiMn2O4 with atomic concentration of boron ranging from 0.01–0.20 and using glutaric acid as a chelating agent. The spinels have been characterized using PXRD, CV and galvanostatic charge-discharge studies. The precursor obtained from the glutaric acid assisted gel was calcined initially at 300 °C for 4 h to obtain the compound and finally at 800 °C for 4 h so as to obtain homogeneity, high degree of purity and crystallinity for better electrochemical performance. This paper suggests that glutaric acid assisted B3+ doped (LiBxMn2−xO4) spinel was found to be as an apt candidate with good electrochemical performance for use in lithium battery.  相似文献   

7.
《Current Applied Physics》2014,14(4):586-589
Stacked-nanoflake Li4Ti5O12 spinel was synthesized via the pyrolysis of a Li–Ti copolymeric precursor formed by in situ polymerization of LiOH and [Ti(OC4H9)4] and acrylic acid. XRD and SEM characterization shows that the powders calcined at 700 °C for 3 h was well-crystallized particles with submicron diameter. Charge–discharge measurement showed the Li4Ti5O12 electrode had displayed excellent rate capability and delivered reversible capacity of 171, 158, 148, 138 and 99 mAh g−1 at rates of 0.1C, 0.5C, 1C, 2C and 4C, respectively. The test electrode also showed excellent cyclability as the capacity retains 96.1% after 60 cycles between 0.5 and 2.5 V.  相似文献   

8.
《Current Applied Physics》2018,18(9):961-967
Mixed NCM (nikel, cobalt, and manganese) powder was treated by a reactive gas from dielectric barrier discharge (DBD) to prepare a cathode material in Lithium ion (Li-ion) battery. The DBD was mainly sustained using N2 gas at atmospheric pressure, and NF3, SF6, and H2 was fed into the discharge to create the reactive gas. Compare to the non-treated sample, impurities on the surface of the NCM powder were significantly removed in a 5 min when the reactive gas was blow into the powder and mixed properly. F atom content on the surface was increased depending on the time duration of mixing, which form a LiF layer on the surface. Desirable LiF layer suppress a heat flow effectively , resulting a decreasing of exothermic temperature inside the Li-ion battery. Additionally, the treatment of NCM powder employing DBD technique was also contributed to electrochemical performance, which was confirmed by c-rate testing.  相似文献   

9.
M. Ganesan 《Ionics》2008,14(5):395-401
Chromium-substituted Li4Ti5O12 has been investigated as a negative electrode for future lithium batteries. It has been synthesized by a solid-state method followed by quenching leading to a micron-sized material. The minimum formation temperature of Li4Ti2.5Cr2.5O12 was found to be around 600 °C using thermogravimetric and differential thermal analysis. X-ray diffraction, scanning electron microscopy, cyclic voltammetry (CV), impedance spectroscopy, and charge–discharge cycling were used to evaluate the synthesized Li4Ti2.5Cr2.5O12. The particle size of the powder was around 2–4 μm. CV studies reveal a shift in the deintercalation potential by about 40 mV, i.e., from 1.54 V for Li4Ti5O12 to 1.5 V for Li4Ti2.5Cr2.5O12. High-rate cyclability was exhibited by Li4Ti2.5Cr2.5O12 (up to 5  C) compared to the parent compound. The conduction mechanism of the compound was examined in terms of the dielectric constant and dissipation factor. The relaxation time has been evaluated and was found to be 0.07 ms. The mobility was found to be 5.133 × 10−6 cm2 V−1 s−1.  相似文献   

10.
LiNi0.5Mn1.5O4 was synthesized as a cathode material for Li-ion batteries by a sonochemical reaction followed by annealing, and was characterized by XRD, SEM, HRTEM and Raman spectroscopy in conjunction with electrochemical measurements. Two samples were prepared by a sonochemical process, one without using glucose (sample-S1) and another with glucose (sample-S2). An initial discharge specific capacity of 130 mA h g−1 is obtained for LiNi0.5Mn1.5O4 at a relatively slow rate of C/10 in galvanostatic charge–discharge cycling. The capacity retention upon 50 cycles at this rate was around 95.4% and 98.9% for sample-S1 and sample-S2, respectively, at 30 °C.  相似文献   

11.
An attempt has been made to prepare cobalt-doped lithium manganese oxide with three different concentrations by simple molten salt method to enhance the electrical property of Li4Mn5O12. Prepared samples were examined by XRD and SEM to identify its structure and morphology. Electrical properties were identified by impedance and conductivity analysis, and it was found that the material exhibits negative temperature coefficient (NTCR) property, i.e., semi-conducting nature. Among the various concentrations, 0.5 mol of Co-doped lithium manganese oxide has shown good conductivity of 3.1 × 10?5 S cm?1 at 433 K.  相似文献   

12.
《Solid State Ionics》2006,177(26-32):2675-2678
Pure phase Cr8O21 with excellent electrochemical properties has been synthesized by sintering anhydrous chromium trioxide (CrO3) at low temperature in flowing oxygen. Cyclic voltammetry (CV) and X-ray diffraction (XRD) characterizations indicate that the inner tetra-chromate groups of Cr8O21 are damaged and Cr8O21 is changed to another layer-structured material when lithium is inserted into the host.  相似文献   

13.
The development of smart structured cathode materials for supercapacitors (SCs) has sparked tremendous interest. However, the appropriate design to achieve high capacitance and energy density-based cathode materials remains a major problem for energy storage systems. This article describes the effective synthesis of self-supported 3D micro-flowers composed of ultrathin nanowires array of Co3O4 on Ni foam (NF) using hydrothermal conditions (Co3O4@NF). The mesoporous Co3O4@NF with a high surface area, providing a rich active state for the Faraday redox reaction and increasing the diffusion rate of the electrolyte ions. The optimized Co3O4@NF-16h electrode exhibited supreme electrochemical performance by delivering a high specific capacitance of 1878, (1127) and 1200 (720 C g−1) F g−1 at 1.0 and 20 A g−1, respectively. The Co3O4@NF electrode retained good capacitance stability of 91% over 10000 cycles at 20 A g−1 with excellent rate-performance of 67% at 20 folded high current values. The obtained results for the Co3O4@NF electrode are presented the enhanced pseudocapacitive performance, indicating the substantial potential for high-performance supercapacitor applications.  相似文献   

14.
The electronic structure and diffusion energy barriers of Li ions in pure and Mn-doped LiFePO4 have been studied using density functional theory (DFT). The results demonstrate clearly that Fe - O covalent bond is weaker than P- O covalent bond. Pure LiFePO4 has band gap of 0.56 eV and diffusion energy barrier of 2.57 eV for Li ions, while the dopant has small band gap of 0.25 eV and low diffusion energy barrier of 2.31 eV, which indicates that the electronic and ionic conductivity of LiFePO4 have been improved owing to doping.  相似文献   

15.
The electronic structure and diffusion energy barriers of Li ions in pure and Mn-doped LiFePO4 have been studied using density functional theory(DFT).The results demonstrate clearly that Fe-O covalent bond is weaker than P-O covalent bond.Pure LiFePO4 has band gap of 0.56 eV and diffusion energy barrier of 2.57 eV for Li ions,while the dopant has small band gap of 0.25 eV and low diffusion energy barrier of 2.31 eV,which indicates that the electronic and ionic conductivity of LiFePO4 have been improved owing to doping.  相似文献   

16.
白莹  王蓓  张伟风 《物理学报》2011,60(6):68202-068202
采用熔融盐法,在较低的温度和较短的时间制备了符合理论化学计量比的纳米LiNiO2.研究表明,经过空气中的低温预烧,可以使制备的纯相纳米LiNiO2具有更加优良的结晶性能和更佳的电化学特性.添加预烧步骤前后所得最终产物的初始容量分别为151和148 mAh ·g-1,经过100周的循环,容量衰减到55和118 mAh ·g-1,容量保持率分别为36.4%和79.7%.原因在于预烧后再进行煅烧降低了阳离子无序度,减少了混杂 关键词: 2')" href="#">LiNiO2 熔融盐法 锂离子电池 电化学性能  相似文献   

17.
Li1 + x(Ni0.5Mn0.5)1  xO2 cathode material for Li-ion batteries has been prepared by a molten salt method using Li2CO3 salt. The influences of synthetic temperature and time have been intensively investigated. It is easy to obtain materials with a hexagonal α-NaFeO2 structure except broad peaks between 20° and 25°. Nickel in Li1 + x(Ni0.5Mn0.5)1  xO2 is oxidized to a trivalent state while manganese maintained a tetravalent state. It is found that the discharge capacities of all samples increase with cycling. The sample prepared at 850 °C for 5 h has a discharge capacity of 130 mAh g− 1 between 2.5 and 4.5 V versus VLi+/Li at a specific current of 0.13 mA cm− 2 after 50 cycles at 25 °C.  相似文献   

18.
The first-principles density functional theory has been employed to study the structural and electronic properties of LixCoSiO4. The lattice stability of LixCoSiO4 during the lithiation–delithiation process is discussed. The changes in the electronic structures of LixCoSiO4 during the deintercalation of Li ions are also probed. It is found that Li2CoSiO4 reacts reversibly with 1 Li+ at an average voltage of 4.1 V versus a lithium anode. The computational results indicate that Li2CoSiO4 material is a potential candidate for high-capacity cathode for advanced lithium ion batteries.  相似文献   

19.
Micrometric LiMn2O4 particles are mechano-chemically modified by ball-milling to obtain a mixture of nano- and micro-scale particles. This mixture is tested as a potential active cathode material for rapid-charge Li ion batteries, and also as a model system for studying the detailed kinetics of Li intercalation/de-intercalation in such electrodes. Ragone plots recorded using galvanostatic measurements indicate enhanced power delivery characteristics of the ball-milled LiMn2O4 compared to its unprocessed counterpart. The processed material also exhibits improved resistance against electrolyte reactions and surface film formation. Due to these advantageous electrochemical attributes, the ball-milled LiMn2O4 serves as an adequately suited system for exploring certain fundamental aspects of Li intercalation in this material. Scan rate dependent slow scan cyclic voltammetry helps to identify the kinetic and diffusion controlled features of Li transport in mechano-chemically processed LiMn2O4. Electrochemical impedance spectroscopy substantiates these findings further and provides detailed kinetic parameters, including voltage dependent charge transfer resistance and diffusion coefficient of Li transport.  相似文献   

20.
《Current Applied Physics》2015,15(4):435-440
Spinel ZnV2O4 nanoparticles are synthesized by a hydrothermal method and its properties are characterized using XRD, SEM, TEM, and electrochemical test. The structural and morphological characterizations show that ZnV2O4 sample has high purity and well crystallization with crystal size less than 20 nm. The as prepared electrode shows stable capacity over 660 mAh g−1 in the voltage range of 0.01–3.0 V at 50 mA g−1. The reaction mechanism with lithium ion is also investigated through ex-XRD and -TEM. It shows that the pristine ZnV2O4 is transformed to isostructural spinel LixV2O4 (x close to 7.6) and metal Zn phase during the first lithiation process. Then the spinel LixV2O4 seems to perform a topotactic intercalation reaction mechanism and that the in-situ formed LixV2O4 can still keep its spinel matrix while allowing more than 5.7 lithium reversibly into/out over 50 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号