首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The influences of pressure on structural, elastic, electronic and optical properties of α-RDX under pressure from 0 to 40?GPa have been investigated by performing first-principles calculations. The obtained structural parameters based on the GGA-PBE+G calculations are consistent with previous experimental values. The results of B/G, C12-C44 and Poisson's ratio show that α-RDX has changed to ductility under pressure between 0 and 5?GPa. The obvious rotation of NO2 group in the equatorial position appears, especially in the range of pressure from 10 to 15?GPa, which influences the elastic and mechanical properties of α-RDX. Moreover, we find that the electrons of α-RDX become more active under higher pressure by comparing the curves of DOS under different pressure. Furthermore, the anisotropy of optical properties under different pressures has been shown.  相似文献   

2.
Using diamond anvil cell, the57Fe Mössbauer spectra of pure iron foil and α-Fe2O3 powder under high pressure have been measured at room temperature.57Fe Mössbauer spectra of α-Fe were measured from 15 GPa to 45 GPa. Isomer shift value decreased and the quadrupole splitting slightly increased as the pressure increased.57Fe Mössbauer spectra of Fe2O3 under high pressure up to 72 GPa were observed. Above 52 GPa, the new lines appeared at the center portion of the spectrum corresponding to the new high pressure phase. The spectrum of new high pressure phase consisted of 6-line splitting and doublet, suggesting the existence of the two different kinds of iron states in it.  相似文献   

3.
Abstract

The phase transition of orthorhombic sulphur α-S8 to a high pressure amorphous sulphur allotrope (a-S) has been investigated by Raman spectroscopy. The conversion is found to be induced by the absorption of laser light and can be discussed in terms of ring opening followed by cis-trans conversion of the dihedral angle of S8 molecules. Laser energy and transition pressure are correlated due to the pressure tuned red shift of the absorption edge of α-S8. The amorphous (a-S) phase is observed up to 15 GPa at laser intensities below 30μW/μm2 at 514.5 and 488.0 nm. Above this threshold power a-S transforms into a second photo-induced phase (p-S), whose discrete Raman spectrum implies an ordered molecular and crystalline structure. By further increasing pressure crystalline S6 can be created which is found to be the dominant molecular species at pressures above 10 GPa and low temperatures. A phase diagram in the range T < 300 K and p < 15 GPa is also presented.  相似文献   

4.
It is generally observed that the rare earth metals adapt an orthorhombic alpha-uranium (α-U) structure at high pressures following the delocalization of 4f shell under compression. We examine the stability of the α-U structure in praseodymium metal at ultrahigh pressures of 313 GPa (volume compression V/V 0?=?0.343) in a diamond anvil cell at room temperature. X-ray diffraction data show a transformation from the α-U structure to a primitive orthorhombic P212121 phase at 147±5 GPa, which is characterized by the anisotropic compressibility of various crystallographic axes. This anisotropic compressibility leads to an interesting situation when the b-axis and the c-axis of the orthorhombic phase become nearly equal above 260 GPa and the structure can be regarded as a pseudo-tetragonal phase. Our present study shows that the 4f band metal Pr does not adapt a body centred tetragonal phase as predicted by theory, but instead novel crystallographic phases are observed at extreme compressions. The present results have a broader impact on the stability of the α-U phase in a variety of f-band systems at high pressures.  相似文献   

5.
Tetravalent tin iodide is a molecular crystal composed of SnI4 tetrahedra loosely packed into a cubic configuration. Under pressure SnI4 becomes metallic at about 15 GPa. We report a Mossbauer effect study of119Sn and129I in SnI4 to pressures of 26 GPa. The spectra exhibit dramatic changes with pressure starting at about 10 GPa and show large pressure hysteresis effects upon reducing the pressure from 26 GPa. In the intermediate region tin exists in both Sn4+ and Sn2+ states, and iodine exists in two nonequivalent sites characterized by a different symmetry and different sign and magnitude of the electric field gradient.Supported by US DOE, BES-Materials ScienceVisiting Scientist, Tel-Aviv University, 69978 Ramat Aviv, IsraelNow at Teledyne Brown Engineering, Huntsville AL 35807 USA  相似文献   

6.
ABSTRACT

High pressure hydrous phases with distorted rutile-type structure have attracted much interest as potential water reservoirs in the Earth’s mantle. An in-situ X-ray diffraction study of β-CrOOH was performed at high pressures of up to 6.2?GPa and high-temperatures of up to 700?K in order to clarify the temperature effect on compression behaviors of β-CrOOH. The P-V-T data fitted to a Birch–Murnaghan equation of state yielded the following results: isothermal bulk modulus KT0?=?191(4)?GPa, temperature derivative (?KT/?T)P?=??0.04(2)?GPa?K?1, and volumetric thermal expansion coefficient α?=?3.3(2)?×?10?5?K?1. In this study, at 300?K, the a-axis became less compressible at pressures above 1–2?GPa. We found that the pressure where the slopes of a/b and a/c ratios turned positive increased with temperature. This is the first experimental study indicating the temperature dependence of the change in the axial compressibility in distorted rutile-type M3+OOH.  相似文献   

7.
The DOS (density of states) and the optical properties of HgS under high pressure are studied with the first-principle computations. The change of the imaginary part, ε2(ω), of the dielectric function shows that HgS tends to metallization with increasing pressure, and this well agrees with the band gap calculations and the conductivities measurement results in the previous work. Under the pressures below 15 GPa, ε2(ω) is relatively anisotropic and tends to be more anisotropic with increasing pressure; while under the pressures above 15 GPa, the anisotropy decreases and finally becomes almost absolutely isotropic after the phase transition. The behavior of ε2(ω) is strongly related to the structure change in the cinnabar to rocksalt phase transition process under high pressure.  相似文献   

8.
Abstract

X-ray diffraction studies on the kinetics and hysteresis of the structural phase transitions in lanthanides under pressures up to 58 GPa and temperatures between 200 and 520 K are presented. Estimates of the 0 K equilibrium transition pressures are derived from the pressure and temperature dependence of the activation free energies ΔaG. A comparison of critical radius ratios, Rws/R5p, for all the regular lanthanides at the various phase transitions shows simple systematics in the high pressure behaviour of the lanthanides. The “volume collapse” transitions in lanthanides are compared with the behaviour of the actinides and discussed with respect to f-electron delocalization.  相似文献   

9.
We found new effect which changes g-values of pair and trimer Co2+ spins by EPR of Rb2Co0.3Mg0.7F4 at 220, 370, 762.2 and 693.6 GHz in pulsed high magnetic fields. The anomalous g-values come from mixing of 1LS and strong exchange interaction.  相似文献   

10.
Abstract

Techniques and results of studies on the kinetics and hysteresis of the structural phase transitions in lanthanides under pressures up to 58 GPa and temperatures between 200 K and 520 K are presented. The transformation rates show the same time dependence as for diffusion controlled transitions, however, other interpretations of this time dependence are also possible. Estimates of the 0 K equilibrium transition pressures are derived from the pressure and temperature dependence of the activation free energies A, G. A comparison of critical radius ratios, Rux/R5p for all the regular lanthanides at the various phase transitions shows simple systematics in the high pressure behaviour of the lanthanides.  相似文献   

11.
The spin states of Fe2+ ions in (Mg0.75,Fe0.25)O magnesiowüstite crystals at hydrostatic pressures up to 90 GPa created in a diamond-anvil cell with helium as a pressure-transmitting medium have been investi-gated by transmission and synchrotron Mössbauer spectroscopy at room temperature. An electron transition from the high-spin (HS) state to the low-spin (LS) state (HS-LS crossover) has been observed in the pressure range of 55–70 GPa. The true HS-LS transition occurs in a narrow pressure range and the extension of the electron transition to ~15 GPa is attributed to the effect of the nearest environment and to thermal fluctuations between the high-spin and low-spin states at finite temperatures. It has been found that the lowest pressure at which the electron HS-LS transition can occur in the Mg1 ? x Fe x system is 50–55 GPa.  相似文献   

12.
Abstract

Measurements of free surface velocity profiles of high-purity titanium samples under shock-wave loading were performed to study the dynamic strength and phase transition parameters. The peak pressure of the initial compression waves was within the range of 4 to 40 GPa, and the load duration was vaned between 10?8 and 10?6 s. An anomalous structure of shock waves was observed at pressures of ~ 2.0 to 5.0 GPa due to the α-ω phase transition. The dynamic strength of pure titanium is lower than that of titanium alloys but exceeds the spall strength of commercial grade titanium.  相似文献   

13.
The magnetic properties of the α-Fe2O3 hematite at a high hydrostatic pressure have been studied by synchrotron Mössbauer spectroscopy (nuclear forward scattering (NFS)) on iron nuclei. Time-domain NFS spectra of hematite have been measured in a diamond anvil cell in the pressure range of 0–72 GPa and the temperature range of 36–300 K in order to study the magnetic properties at a phase transition near a critical pressure of ~50 GPa. In addition, Raman spectra at room temperature have been studied in the pressure range of 0–77 GPa. Neon has been used as a pressure-transmitting medium. The appearance of an intermediate electronic state has been revealed at a pressure of ~48 GPa. This state is probably related to the spin crossover in Fe3+ ions at their transition from the high-spin state (HS, S = 5/2) to a low-spin one (LS, S = 1/2). It has been found that the transient pressure range of the HS–LS crossover is extended from 48 to 55 GPa and is almost independent of the temperature. This surprising result differs fundamentally from other cases of the spin crossover in Fe3+ ions observed in other crystals based on iron oxides. The transition region of spin crossover appears because of thermal fluctuations between HS and LS states in the critical pressure range and is significantly narrowed at cooling because of the suppression of thermal excitations. The magnetic PT phase diagram of α-Fe2O3 at high pressures and low temperatures in the spin crossover region has been constructed according to the results of measurements.  相似文献   

14.
Abstract

We report Raman-scattering studies of SnGeS3 under hydrostatic pressures up to 19.5 GPa. An assignment to internal-external modes is proposed, based on the pressure slopes obtained. Our data show evidence for two critical pressures, one around 7 GPa and a second one around 12 GPa. The material renders itself Raman inactive at 19.5 GPa. The observed changes are reversible upon pressure release.  相似文献   

15.
We have studied the high pressure behavior of the α and β-phases of Tb 2(MoO 4)3 using a combination of powder X-ray diffraction and ab initio calculations. The α-Tb 2(MoO 4)3 phase did not undergo any structural phase transition in the pressure range from 0 up to the maximum experimental pressure of 21 GPa. We observed line broadening of the diffraction patterns at pressures above 7 GPa, which may be due to non-hydrostatic conditions. The complete amorphization of the sample was not reached in the pressure range studied, as expected from previous Raman studies. The behavior under pressure of the β-Tb 2(MoO 4)3 phase is similar to that of other rare-earths trimolybdates with the same structure at room temperature. A phase transition was observed at 2 GPa. The new phase, which can be identified as the δ-phase, has never been completely characterized by diffraction studies. A tentative indexation has been performed and good refined cell parameters were obtained. We detect indications of amorphization of the δ-Tb 2(MoO 4)3 phase at 5 GPa.  相似文献   

16.
Abstract

The process of crystallization of SiO2 and GeO2 glasses was studied using samples retrieved after heat treatment at high pressures up to 12GPa. Two different samples of fused quartz and silica gel were studied in order to compare SiO2 glass structure. Upon heating beyond 400°C at fixed pressures under which stishovite, rutile-type phase, is thermodynamically stable, the SiO2 glasses underwent crystallization into coesite and stishovite, without quartz. In the course of heating GeO2 glass in the stability field of rutile-type phase, low-quartz-type phase appeared as an intermediate at pressures below 7GPa, whereas only rutile-type phase was observed at 12GPa. The crystallization sequences are discussed in terms of coordination numbers in the glass and crystalline states.  相似文献   

17.
In order to elucidate the anisotropic pressure effect on superconductivity in an iron-based superconductor, magnetization measurements have been performed in Ba(Fe0.92Co0.08)2As2 single crystals under uniaxial pressures applied along the c-axis. Gigantic Tc suppression, dTc/dP//c = −15 K/GPa, was observed when the anisotropic deformation with the a-expansion and c-compression was induced by the c-pressure, which should be compared with dTc/dP < +1 K/GPa in the isotropic pressure case. This suggests that the a-axis (c-axis) compression has a positive (negative) contribution to Tc.  相似文献   

18.

A crystal and magnetic structure of manganites Pr0.7Ca0.3Mn1?y Fe y O3 (y = 0, 0.1) has been studied by means of powder neutron diffraction at pressures up to 4 GPa in the temperature range 15-300 K. Under high pressure, an appearance of A-type antiferromagnetic state in both systems was observed. Both compounds exhibit anisotropic compression of the lattice which leads to the apical compression of MnO6 octahedra along the crystallographic b-axis. The calculated from obtained structural data pressure dependence of the charge-carrier bandwidth is in a qualitative agreement with observed pressure behavior of insulator-metal transition temperature within the framework of the double-exchange model.  相似文献   

19.
The high pressure properties of icosahedral boron arsenide (B12As2) were studied by in situ X-ray diffraction measurements at pressures up to 25.5 GPa at room temperature. B12As2 retains its rhombohedral structure; no phase transition was observed in the pressure range. The bulk modulus was determined to be 216 GPa with the pressure derivative 2.2. Anisotropy was observed in the compressibility of B12As2c-axis was 16.2% more compressible than a-axis. The boron icosahedron plays a dominant role in the compressibility of boron-rich compounds.  相似文献   

20.

The results of a complementary study of magnetic properties, magnetovolume effects and neutron diffraction studies under pressure in R2Fe17 compounds with non-magnetic R (R - Y, Ce, Lu) are presented. The collinear ferromagnetic phase existing at low temperature in all three compounds is suppressed at high pressures. The critical pressure P C depends on the compound studied (P C ? 2.5 kbar for Ce2Fe17, P C ? 3.5 kbar for Lu2Fe17, P C ? 12 kbar for Y2Fe17). Incommensurate non-collinear magnetic structures that replace the ferromagnetic ones under high pressures have similar features - magnetic moments in each layer of atoms (perpendicular to z-axis) are parallel each other, their direction helically changes from layer to layer. A generalised phase diagram of the studied R2Fe17 compounds was determined with use of the recent compressibility data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号