共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract Well—resolved Raman spectra of crystalline sulfur have been recorded in a diamond anvil cell (DAC) in the pressure range from atmospheric pressure to 50 GPa at room temperature, using an 0.6 m triple spectrograph and a CCD multichannel detector. The spectra indicate two phase transitions in the pressure region between 10 and 15 GPa. 相似文献
2.
The effect of pressure on the Raman modes in TeO2 (paratellurite) has been investigated to 30GPa, using the diamond cell and argon as pressure medium. The pressure dependence
of the Raman modes indicates four pressure-induced phase transitions near 1 GPa, 4.5 GPa, 11 GPa and 22 GPa. Of these the
first is the well studied second-order transition fromD
4
4
symmetry toD
2
4
symmetry, driven by a soft acoustic shear mode instability. The remarkable similarity in the Raman spectra of phases I to
IV suggest that only subtle changes in the structure are involved in these phase transitions. The totally different Raman
spectral features of phase V indicate major structural changes at the 22GPa transition. It is suggested that this high pressure-phase
is similar to PbCl2-type, from high pressure crystal chemical considerations. The need for a high pressure X-ray diffraction study on TeO2 is emphasized, to unravel the structure of the various high pressure phases in the system. 相似文献
3.
Abstract Phase transitions of orthorhombic sulfur were investigated above 10 GPa by Raman spectroscopy using red light excitation. Transitions into several phases that have been reported in previous studies using green light excitation, are confirmed. The phase behaviour is observed to depend strongly on the preparation method. In the presence of a pressure transmitting medium (methanol/ethanol, 4:1), a sequence of phases α-S8 → [intermediate phase (“ip”) + S6] → [S6 + high pressure-low temperature phase (“hplt”)] is described and characterized. Without the use of a pressure transmitting medium, the phase sequence α-S8 → [“ip” + “hplt”] + “hplt” is observed. In addition, contributions of amorphous sulfur are detected around 10 GPa, i.e. at pressures below the transformation of α-S8 into the above-mentioned phases. Characteristic Raman spectra of the different phases are extracted and documented over a wide pressure range. 相似文献
4.
The pressure dependence of the first-order Raman peak and two second-order Raman features of ThO2 crystallizing in the fluorite-type structure is investigated using a diamond anvil cell, up to 40GPa. A phase transition
from the fluorite phase is observed near 30 GPa as evidenced by the appearance of seven new Raman peaks. The high pressure
phases of ThO2 and CeO2 exhibit similar Raman features and from this it is believed that the two structures are the same, and have the PbCl2-type structure. The pressure dependence dω/dP of the observed phonons and their mode Grüneisen parameters are similar to the isostructural CeO2. The observed second-order Raman features are also identified from the calculated phonon dispersion curves for ThO2. 相似文献
5.
6.
利用碳化硅压腔在室温(25℃)下,研究了异辛烷(2,2,4-三甲基戊烷)在常压至1.2GPa条件下的拉曼光谱特征。研究结果表明,异辛烷CH2和CH3的碳氢伸缩振动的拉曼位移随着压力的增大均呈线性向高频方向移动,其拉曼位移与压力的函数关系为:ν2 873=0.002 8P+2 873.3;ν2 905=0.004 8P+2 905.4;ν2 935=0.002 7P+2 935.0;ν2 960=0.012P+2 960.9。在1.0GPa附近,异辛烷的拉曼位移出现突变,与显微镜下观察发生的异辛烷液-固相变一致。结合异辛烷在常压下的熔点数据,获得了异辛烷的液-固两相相图,并根据克拉贝龙方程获得了液-固相转变过程中的摩尔体积变化量ΔVm=4.46×10-6 m3.mol-1和熵变ΔS=-30.32J.K-1.mol-1。 相似文献
7.
The high pressure and high-temperature behavior of MnCO3 was investigated up to 55?GPa at ambient temperature and up to 573?K at ambient pressure by Raman spectroscopy, respectively. Some new modes were detected at ~16 and ~32?GPa, which were assigned to MnCO3-I below 16?GPa and to MnCO3-II above 32?GPa, and to a coexisting phase of them in between. The high pressure vibration properties of all Raman modes, especially high frequency modes, were systematically reported. The coexisting phase of MnCO3-I and MnCO3-II had much easier compressibility than the MnCO3-II phase. The thermal stability of MnCO3 was at least to 573?K and its thermal expansion along the c axis was easier than a and b axes. 相似文献
8.
用热液金刚石压腔装置结合拉曼光谱技术研究了高温高压下方解石的相变过程及拉曼光谱特征。结果表明:常温条件下,体系压力增至1 666和2 127 MPa时,方解石的拉曼特征峰155cm-1消失,1 087cm-1峰分裂为1 083和1 090cm-1两个谱峰、282cm-1峰突然降至231cm-1,证明其转变为方解石-Ⅱ和方解石-Ⅲ。在起始压力为2 761MPa和低于171℃的升温过程中,方解石-Ⅲ的拉曼散射的各个特征振动峰没有变化。当温度达到171℃,方解石晶体完全变成不透明状,其对称伸缩振动峰1 087cm-1、面内弯曲振动峰713cm-1和晶格振动峰155和282cm-1均发生突变,说明方解石-Ⅲ相变生成一种碳酸钙新相。体系降至常温,该新相一直保持稳定不变,表明高温高压下方解石向碳酸钙新相的转变过程是不可逆的。方解石-Ⅲ与碳酸钙新相之间的相变线方程为P(MPa)=9.09.T(℃)+1 880。碳酸钙新相的对称伸缩振动峰(ν1 087)随压力、温度的变化率分别为dν/dP=5.1(cm-1.GPa-1),dν/dT=-0.055 3(cm-1.℃-1)。 相似文献
9.
We have investigated the pressure-induced phase transition behavior (~3.0 GPa) of aqueous 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) solutions with N-methylacetamide (NMA), which is a simple protein model compound, using Raman spectroscopy. From Raman spectral changes and optical observation in the sequence of elevated pressure, we found that the aqueous [bmim][Cl] solution with NMA in the water-rich condition induces the high pressure crystallization at 2.6 GPa. On the other hand, in the [bmim][Cl]-rich condition, high pressure crystalline phase was not observed even up to 3.0 GPa. Our results show that the aqueous [bmim][Cl] solution in the ionic liquid-rich condition along with the use of pressure has a potential for protein-preserving solvent. 相似文献
10.
Srinija Repalle Vadym Drozd Wonbong Choi 《Journal of Physics and Chemistry of Solids》2010,71(8):1150-1036
The study of the aligned multiwalled carbon nanotubes (MWCNTs) for interlinking bonding under high pressures and temperatures have been conducted in the diamond anvil cell. The MWCNT samples were analyzed using the Raman spectroscopy, when treated under the combinations of pressure and temperature ranges of 2-20 GPa and 25-500 °C. The analyses show the formation of interlinking bonding at a pressure above 2.5 GPa when treated under the temperature 500 °C, based on the significant change of the relative intensity between D- and G-bands in the Raman spectra. Comparisons of the data obtained before and after the high pressure and high temperature treatments are reported. The result indicates that the aligned MWCNTs may be easier to form the interlinking bonding compared to randomly oriented MWCNTs. 相似文献
11.
Raman and optical absorption studies under pressure have been conducted on KTb(MoO4)2 up to 35.5 GPa. A phase transformation occurs at 2.7 GPa when the crystal is pressurized at ambient temperature in a hydrostatic
pressure medium. The sample changes to a deep yellow color at the transition and visibly contracts in theα-axis direction. The color shifts to red on further pressure increase. The Raman spectral features and the X-ray powder pattern
change abruptly at the transition indicating a structural change. The pressure-induced transition appears to be a property
of the layer-type alkali rare earth dimolybdates. However, the color change at the transition in KTb(MoO4)2 is rather unusual and is attributed to a valence change in Tb initiated by the structural transition and consequent intervalence
charge transfer between Tb and Mo.In situ high pressure X-ray diffraction data suggest that phase II could be orthorhombic with a unit cell having 3 to 4% smaller
volume than that of phase I. 相似文献
12.
High pressure behavior of ammonia borane after thermal decomposition was studied by Raman spectroscopy at high pressure up to 10 GPa using diamond anvil cell (DAC). The ammonia borane was decomposed at around 140 °C under the pressure at ∼0.7 GPa. Raman spectra show the hydrogen was desorbed within 1 h. The hydrogen was sealed in DAC well and cooled down to room temperature. Applying higher pressure up to ∼10 GPa indicates interactions between the products and loss of dihydrogen bonding. No rehydrogenation was detected in the pressure range investigated. 相似文献
13.
Abstract High-pressure structural transition and volume compression for thallium were investigated to 45 GPa in a diamond anvil cell using the angular dispersive X-ray diffraction technique. Except for the known polymorphic transition at 3.7 GPa, no other structural change was observed in this pressure range. The equation of state of the high pressure phase has been obtained: its initial bulk modulus, B0 = 33.1 GPa, is lower by 10% than that of the hexagonal phase at normal pressure. 相似文献
14.
Sugandha Dogra Jasveer Singh Himanshu Kumar Poswal S. M. Sharma A. K. Bandyopadhyay 《高压研究》2013,33(2):292-303
The present paper reports the results of in situ Raman studies carried out on nano-crystalline CeO2 up to a pressure of 35 GPa at room temperature. The material was characterized at ambient conditions using X-ray diffraction and Raman spectroscopy and was found to have a cubic structure. We observed the Raman peak at ambient at 465 cm?1, which is characteristic of the cubic structure of the material. The sample was pressurized using a diamond anvil cell using ruby fluorescence as the pressure monitor, and the phase evolution was tracked by Raman spectroscopy. With an increase in the applied pressure, the cubic band was seen to steadily shift to higher wavenumbers. However, we observed the appearance of a number of new peaks around a pressure of about 34.7 GPa. CeO2 was found to undergo a phase transition to an orthorhombic α -PbCl2-type structure at this pressure. With the release of the applied pressure, the observed peaks steadily shift to lower wavenumbers. On decompression, the high pressure phase existed down to a total release of pressure. 相似文献
15.
16.
Abstract Raman spectroscopy was used to compare the structural effects on single-walled carbon nanotubes of pressures due to the cohesive energy of liquid media with the effects of an externally applied macroscopic pressure. Results were very similar, showing that the interpretation of the cohesive energy density as an internal pressure is physically realistic. 相似文献
17.
In situ solidification of 1-ethyl-3-methylimidazolium ethyl sulfate [EMIM][EtOSO3] from melt under high pressure has been investigated by using Raman spectroscopy. The results indicate that [EMIM][EtOSO3] might experience a phase transition at about 2.4 GPa upon compression, which could be identified as solidification to a superpressurized glass by pressure broadening of the sharp ruby R1 fluorescence line. Upon cooling, it solidifies as a glassy state rather than crystallizes at low temperature down to 93 K. These facts are suggestive of a phase transition of liquid to a superpressurized glass induced by compression in [EMIM][EtOSO3], which is similar to the glassy state at low temperature. 相似文献
18.
Abstract A metastable hexagonal close-packed (hcp) phase obtained by rapid quenching from the melt has been compressed to 5.7 GPa and annealed up to 1023 K. The axial ratios (c/a) of the hcp structure at the initial state, the stable state annealed under high pressure (5.7 GPa, 673 K) and the quenched state from high pressure and high temperature condition are 1.630, 1.635 and 1.628, respectively. The volume reduction of the hcp structure by application of high pressure gives rise to increase the c/a ratio, which corresponds to an apparent reduction in the number of valence electrons per atom (e/a) in the Hume-Rothery alloys. 相似文献
19.
Abstract The DAC X-ray power photograph method was employed for studing the phase transition of samarium up to 26.3 GPa. The experimental results show that the dhcp and fcc high pressure phase of Sm appeared at about 4.0 and 12.5 GPa and room temperature respectively. The dhcp phase was kept until 19.6 GPa. A model for Sm-type -? dhcp -? fcc phase transition is provided in this paper. 相似文献
20.
High pressure Raman spectroscopic studies on Gd2(MoO4)3(GMO) have been carried out at ambient temperature in the diamond cell to 10 GPa hydrostatic pressure. These experiments have
revealed pressure-induced phase transitions in GMO near 2 GPa and 6.0 GPa. The first transition is from Pba2(β′) phase to another undetermined crystalline phase, designated as phase II, and the second transition is to an amorphized
state. On releasing pressure there is a partial reversion to the crystalline state. The Raman data indicate that the amorphization
is due to disordering of the MoO4 tetrahedral units. Further, it is inferred from the nature of the Raman bands in the amorphized material that the Mo-O bond
lengths and bond angles have a range of values, instead of a few set values. The results of the present study as well as previous
high pressure-high temperature quenching experiments strongly support that pressure-induced amorphization in GMO is a consequence
of the kinetically impededβ toα phase transition. The system in frustration becomes disordered. The rare earth trimolybdates crystallizing in theβ′ structure are all expected to undergo similar pressure-induced amorphization. 相似文献