首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ high-energy X-ray diffraction measurements were made for the first time on a water-saturated silicate melt at high pressure and temperature. A modified hydrothermal diamond anvil cell (HDAC), designed to minimize the path length of the X-ray beam within a diamond anvil and to increase the solid angle of the diffracted beam, was used to reduce high background contributions and extend X-ray diffraction data collection in Q space. Quantitative differential pair distribution function (PDF) analysis of X-ray diffraction data show that the first measurable (Si–O) peak is 0.095 Å greater in length in the hydrous melt than in the starting glass. Contributions from the H2O O–O correlations, as well as from the second nearest neighbor O–O correlations within the silicate melt, are evident within the second peak of the differential PDF. The procedure described opens new opportunities to directly investigate volatile-rich melts at high pressure and temperature.  相似文献   

2.
The absence of in situ optical probes for large volume presses (LVPs) often limits their application to high-pressure materials research. In this article, we present a unique anvil/optical window design for use in LVPs, which consists of an inverted diamond anvil seated in a Bridgman-type anvil. A small cylindrical aperture through the Bridgman anvil ending at the back of diamond anvil allows optical access to the sample chamber and permits direct optical spectroscopy measurements, such as ruby fluorescence (in situ pressure) or Raman spectroscopy. The performance of this anvil design has been demonstrated by loading KBr to a pressure of 14.5 GPa.  相似文献   

3.
Melting of boron subphosphide (B12P2) to 26?GPa has been studied by in situ synchrotron X-ray powder diffraction in a laser-heated diamond anvil cell, and by quenching and electrical resistance measurements in a toroid-type high pressure apparatus. B12P2 melts congruently, and the melting curve has a positive slope of 23(6)?K/GPa. No solid-state phase transition was observed up to the melting in the whole pressure range under study.  相似文献   

4.
ABSTRACT

A review of some important technical challenges related to in situ diamond anvil cell laser heating experimentation at synchrotron X-ray sources is presented. The problem of potential chemical reactions between the sample and the pressure medium or the carbon from the diamond anvils is illustrated in the case of elemental tantalum. Preliminary results of a comparison between reflective and refractive optics for high temperature measurements in the laser-heated diamond anvil cell are briefly discussed. Finally, the importance of the size and relative alignment of X-ray and laser beams for quantitative X-ray measurements is presented.  相似文献   

5.
We designed new anvil assemblies for acquiring high-quality neutron diffraction data and ruby fluorescence spectra inside a sample chamber. The conical aperture of Ni-binded WC anvils was expanded by a factor of two. A hybrid gasket made of TiZr- and Al-alloy was developed to prevent outward extrusion. A small and optically transparent window of moissanite was introduced to allow for the determination of pressure and hydrostaticity by measurement of ruby fluorescence spectra. High pressure-generation tests that make use of Bi electrical conductivity and ruby pressure markers revealed that pressure could be determined over 10 GPa. In situ synchrotron X-ray diffraction experiments were also carried out using NaCl as the pressure calibrants. The maximum pressure achieved was approximately 13 GPa. The neutron diffraction intensity from the newly generated anvil assemblies was 2.5–3.0 times greater than that using the standard toroidal anvil assemblies used previously.  相似文献   

6.
S. Karmakar 《高压研究》2013,33(2):381-391
We describe a technique for making electrical transport measurements in a diamond anvil cell at liquid helium temperature having in situ pressure measurement option, permitting accurate pressure determination at any low temperature during the resistance measurement scan. In general, for four-probe resistivity measurements on a polycrystalline sample, four fine gold wires are kept in contact with the sample with the help of the compression from the soft solid (usually alkali halides such as NaCl, KCl, etc.) acting as a pressure-transmitting medium. The actual pressure on the sample is underestimated if not measured from a ruby sphere placed adjacent to the sample and at that very low temperature. Here, we demonstrate the technique with a quasi-four-probe resistance measurement on an Fe-based superconductor in the temperature range 1.2–300 K and pressures up to 8 GPa to find an improved pressure dependence of the superconducting transition temperature.  相似文献   

7.
We describe a new device, based on a V7 Paris–Edinburgh press, for torsional testing of material at pressures up to 7 GPa (extendable to 15 GPa). Samples are deformed using a simple shear geometry between opposed anvils by rotating the lower anvil, via a rotational actuator, with respect to an upper, stationary, anvil. Use of conical anvil profiles greatly increases sample dimensions more than other high-pressure torsional apparatus did. Samples of polycrystalline Zr (2 mm thick, 3.5 mm diameter) have been sheared at strains exceeding γ ~1.5 at constant strain rate and at pressures from 1.8 to 5 GPa, and textural development has been studied by electron microscopy. Use of amorphous-boron-epoxy gaskets means that nearly simple shear of samples can be routinely achieved. This apparatus allows study of the plastic and anelastic behaviour of materials under high pressure, and is particularly suited for performing in situ investigations using synchrotron or neutron radiation.  相似文献   

8.
Radiolysis‐induced effects on aqueous tungsten ions are observed to form a precipitate within seconds upon exposure to a synchrotron X‐ray micro‐beam in a WO3 + H2O system at 873 K and 200 MPa. In situ Fe K‐edge energy‐dispersive X‐ray absorption spectroscopy (ED‐XAS) measurements were made on Fe(II)Cl2 aqueous solutions to 773 K in order to study the kinetics of high‐temperature reactions of Fe2+ and Fe3+ ions with transient radiolysis species. The radiolytic reactions in a fluid sample within a hydrothermal diamond anvil cell result in oxidation of the Fe2+ ion at 573 K and reduction of Fe3+ at temperatures between 673 and 773 K and of the Fe2+ ion at 773 K. The edge‐energy drift evident in the ED‐XAS data directly reflects the kinetics of reactions resulting in oxidation and/or reduction of the Fe2+ and Fe3+ ions in the aqueous solutions at high temperatures. The oxidation and reduction trends are found to be highly consistent, making reliable determinations of reaction kinetics possible.  相似文献   

9.
A recently developed portable multi‐anvil device for in situ angle‐dispersive synchrotron diffraction studies at pressures up to 25 GPa and temperatures up to 2000 K is described. The system consists of a 450 ton V7 Paris–Edinburgh press combined with a Stony Brook `T‐cup' multi‐anvil stage. Technical developments of the various modifications that were made to the initial device in order to adapt the latter to angular‐dispersive X‐ray diffraction experiments are fully described, followed by a presentation of some results obtained for various systems, which demonstrate the power of this technique and its potential for crystallographic studies. Such a compact large‐volume set‐up has a total mass of only 100 kg and can be readily used on most synchrotron radiation facilities. In particular, several advantages of this new set‐up compared with conventional multi‐anvil cells are discussed. Possibilities of extension of the (P,T) accessible domain and adaptation of this device to other in situ measurements are given.  相似文献   

10.
We present an internally heated autoclave, modified in order to permit in situ studies at pressure up to 0.5 GPa and temperature up to 1000 °C. It is equipped with transparent sapphire windows, allowing the observation of the whole experiment along the horizontal axis. In the experimental cell, the sample is held between two thick transparent plates of sapphire or diamond, placed in the furnace cylinder. The experimental volume is about 0.01 cm3. Video records are made during the whole experiment. This tool is developed mainly to study the magmatic processes, as the working pressures and temperatures are appropriate for subvolcanic magma reservoirs. However, other applications are possible, such as the study of subsolidus phase equilibria as we have used well-known phase transitions, such as the system of AgI, to calibrate the apparatus with respect to pressure and temperature. The principle of the apparatus is detailed. Applications are presented, such as studies of melt inclusions at pressure and temperature and an in situ study of magma degassing through the investigation of nucleation and growth processes of gas bubbles in a silicate melt during decompression.  相似文献   

11.
The lifetime of the ruby R1 fluorescence line was measured as a function of pressure (up to about 20 GPa) and temperature (550 K) in an externally heated diamond anvil cell (DAC). At constant temperatures, the lifetime is increasing linearly with increasing pressure. The slope of the pressure dependence is constant up to a temperature of 450 K and it is decreasing at higher temperatures. At constant pressure, the lifetime is exponentially decreasing with increasing temperature. The (p, T)-dependence can be parametrized by the combination of a linear and an exponential function. This allows an accurate p, T-determination by the combination of fluorescence spectroscopy using Sm2+-doped strontium tetraborate and lifetime measurements of ruby, as the energy of the Sm2+ fluorescence is nearly temperature-independent.  相似文献   

12.
The high-pressure behaviour of zinc sulphide, ZnS, has been investigated, using an in situ X-ray powder diffraction technique in a diamond anvil cell, at pressures and temperatures up to 35 GPa and 1000 K, respectively. The pressure-induced phase transition from a zincblende (B3) to a rocksalt (B1) structure was observed. This transition occurred at 13.4 GPa and at room temperature, and a negative dependence on temperature for this transition was confirmed. The transition boundary was determined to be P (GPa) = 14.4 ? 0.0033 × T (K).  相似文献   

13.
We describe some important improvements allowed by the development of new cell assemblies coupled to opposed conical sintered diamond anvils in the Paris–Edinburgh press. We provide X-ray absorption and diffraction experiments carried out at pressures up to 16.5 GPa. The maximum temperature reached was 1800 K for P<10 GPa and 1300 K for higher pressures. The sintered diamond anvils are X-ray transparent and give access to a much larger X-ray window than the tungsten carbide anvils, even at the highest pressure. Therefore, X-ray measurements are performed using in situ cross-calibration simultaneously. We also describe a new heating setup used to reach high temperatures, despite the low conductivity of the sintered diamond core by deviating the electrical current using copper strips. These improvements are illustrated by recent data collected using angle dispersive in situ X-ray diffraction on liquid Fe-18%wt S and using EXAFS at the barium K-edge on Ba8Si46 silicon clathrates and at the iodine K-edge on iodine-intercalated nanotubes.  相似文献   

14.
Since a long time, efforts have been made to improve the accuracy of pressure and temperature measurements in diamond anvil cell experiments performed in experimental petrology and high-pressure physics. Here, we report on the state-of-the-art of the research carried out during past few years with the diamond anvils carrying implanted electronic structures (‘intelligent’ anvils, iAnvils). The electronic structures are inserted a few microns below the diamond surface into the diamond lattice by high-energy implantation of boron. These structures can be used as pressure- and temperature-sensitive devices. Another useful application is the fabrication of micro-heaters integrated in the anvils. Pressure- and temperature-induced responses of the sensors (change of resistance) are quantified by low-current measurement equipment. Calibrations against pressure–temperature parameters are performed using well-known phase transitions or by using equation of state of pure substances. Results of in situ measurements performed on iAnvils under pressure and temperature are presented, together with calibration curves for pressure and temperature. Future experiments on in situ measurements of the conductivity dependence of the sensor structures are discussed.  相似文献   

15.
The most reliable information about crystal structures and their response to changes in pressure and temperature is obtained from single-crystal diffraction experiments. We have developed a methodology to perform single-crystal X-ray diffraction experiments in laser-heated diamond anvil cells and demonstrate that structural refinements and accurate measurements of the thermal equation of state of metals, oxides and silicates from single-crystal intensity data are possible in pressures ranging up to megabars and temperatures of thousands of degrees. A new methodology was applied to solve the in situ high pressure, high temperature structure of iron oxide and study structural variations of iron and aluminum bearing silicate perovskite at conditions of the Earth's lower mantle.  相似文献   

16.
Polycrystalline diamond was investigated under high pressure and high temperature of 5.0 GPa and 1100–1500 °C in the presence of tungsten. In situ resistance measurements indicated that reactions between diamond and tungsten happened at about 960 °C. Phase analysis demonstrated that WC increased and meta-stability of W2C decreased clearly at the higher temperature. It is clear from the characterization of the sintered body that the electrical resistance decreased and the density of specimens increased as the sintering temperature rose. The specimen sintered at 1500 °C has a homogeneous microstructure and good conductivity.  相似文献   

17.
Double-sided laser heating (LH) combined with synchrotron X-ray radiation for in situ studies in the diamond anvil cell (DAC) has been the most productive and widely used high-temperature–high pressure technique in the past two decades. In the framework of the UPBL11 project (upgrade of ID24 beamline of European Synchrotron Radiation Facility), we developed a new on-line LH system for DACs. The preliminary optical scheme of the system is presented and discussed. Varying the settings, we are able to shape and to size the beam on the surface of the sample in the DAC. First pilot applications to the Fe case are shown.  相似文献   

18.
In this article, water-soluble graphene–cadmium telluride quantum dot nanocomposites were fabricated through the synthesis of cadmium telluride quantum dots in the presence of graphene aqueous dispersion. It was found that pyrene could remarkably quench fluorescence of graphene–cadmium telluride quantum dot nanocomposites. On this basis, a novel method for the determination of pyrene was developed. Factors affecting the pyrene detection were investigated, and the optimum conditions were determined. Under the optimum conditions, a linear relationship could be established between the quenching of fluorescence intensity of graphene–cadmium telluride quantum dot nanocomposites and the pyrene concentration in the range of 6.00 × 10?8–2.00 × 10?6 mol L?1 with a correlation coefficient of 0.9959. The detection limit was 4.02 × 10?8 mol L?1. Furthermore, the nanocomposites were applied to practical determination of pyrene in different water samples with satisfactory results.  相似文献   

19.
A method of simultaneous X-ray diffraction and electrical resistance measurements of materials in a diamond anvil cell has been developed. The experimental arrangement for the electrical measurements uses a gasket as a part of the electrode scheme. Application of the new methodology is demonstrated on the examples of the study of high-pressure high-temperature behavior of Pr and Fe–Ni alloys. Simultaneously obtained diffraction and resistance data provide the different, from earlier studies, interpretations of the topology of the dhcpfcc phase transition in the phase diagram of Pr. Namely, the shape of a hysteretic region is mostly defined by kinetics of the dhcp phase growth rather than by thermodynamic driving force at the fcc to dhcp phase transformation. The results of combined X-ray diffraction and resistance measurements of Fe0.8Ni0.2 alloy up to 18 GPa and 425 K are reported along with the complementary resistance measurements of Fe0.9Ni0.1 alloy.  相似文献   

20.
High pressure experiments were performed on D2O ice VII using a diamond anvil cell in a pressure range of 2.0–60 GPa at room temperature. In situ X-ray diffractometry revealed that the structure changed from cubic to a low symmetry phase at approximately 11 GPa, based on the observed splitting of the cubic structure's diffraction lines. Heating treatments were added for the samples to reduce the effect of non-hydrostatic stress. After heating, splitting diffraction lines became sharp and the splitting was clearly retained. Although symmetry and structure of the transformed phase have not been determined, change in volumes vs. pressure was calculated, assuming that the low-symmetry phase had a tetragonal structure. The bulk modulus calculated for the low-symmetry phase was slightly larger than that for the cubic structure. In Raman spectroscopy, the squared vibrational frequencies of ν1 (A1g), as a function of pressure, showed a clear change in the slope at 11–13 GPa. The full width at half maxima of the O-D modes decreased with increasing pressure, reaching a minimum at approximately 11 GPa, and increased again above 11 GPa. These results evidently support the existence of phase change at approximately 11 GPa for D2O ice VII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号