首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
For every space X let K(X) be the set of all compact subsets of X. Christensen [J.P.R. Christensen, Necessary and sufficient conditions for measurability of certain sets of closed subsets, Math. Ann. 200 (1973) 189-193] proved that if X,Y are separable metrizable spaces and F:K(X)→K(Y) is a monotone map such that any LK(Y) is covered by F(K) for some KK(X), then Y is complete provided X is complete. It is well known [J. Baars, J. de Groot, J. Pelant, Function spaces of completely metrizable space, Trans. Amer. Math. Soc. 340 (1993) 871-879] that this result is not true for non-separable spaces. In this paper we discuss some additional properties of F which guarantee the validity of Christensen's result for more general spaces.  相似文献   

2.
In this paper we obtain characterizations of metrizable spaces, paracompact M-spaces, Moore spaces and semimetrizable spaces in terms of the way those spaces are embedded in their Stone-?ech compactification. In addition, we give an internal characterization of paracompact M-spaces which we use in the proof of the embedding characterization.  相似文献   

3.
We describe the structure of spaces of continuous step functions over GO-spaces. We establish a relation between the Dedekind completion of a GO-space L and properties of the space of continuous functions from L to 2 with finitely many steps. We use the established relation to prove that a countably compact GO-space L has Lindelöf Cp(L) iff the Dedekind remainder of L is Lindelöf and every compact subspace of L is metrizable. Or equivalently, a countably compact GO-space L has Lindelöf Cp(L) iff every compact subspace of L is metrizable and a Gδ-set in L. Other results are obtained.  相似文献   

4.
We introduce the classes of monotonically monolithic and strongly monotonically monolithic spaces. They turn out to be reasonably large and with some nice categorical properties. We prove, in particular, that any strongly monotonically monolithic countably compact space is metrizable and any monotonically monolithic space is a hereditary D-space. We show that some classes of monolithic spaces which were earlier proved to be contained in the class of D-spaces are monotonically monolithic. In particular, Cp(X) is monotonically monolithic for any Lindelöf Σ-space X. This gives a broader view of the results of Buzyakova and Gruenhage on hereditary D-property in function spaces.  相似文献   

5.
Hurewicz characterized the dimension of separable metrizable spaces by means of finite-to-one maps. We investigate whether this characterization also holds in the class of compact F-spaces of weight c. Our main result is that, assuming the Continuum Hypothesis, an n-dimensional compact F-space of weight c is the continuous image of a zero-dimensional compact Hausdorff space by an at most n2-to-1 map.  相似文献   

6.
The simplest condition characterizing quasi-finite CW complexes K is the implication XτhKβ(X)τK for all paracompact spaces X. Here are the main results of the paper:
Theorem 0.1. If{Ks}sSis a family of pointed quasi-finite complexes, then their wedge?sSKsis quasi-finite.  相似文献   

7.
In this note we introduce the concept of a quasi-finite complex. Next, we show that for a given countable simplicial complex L the following conditions are equivalent:
L is quasi-finite.
There exists a [L]-invertible mapping of a metrizable compactum X with e-dimX?[L] onto the Hilbert cube.Finally, we construct an example of a quasi-finite complex L such that its extension type [L] does not contain a finitely dominated complex.
  相似文献   

8.
9.
We study CLP-compact spaces (every cover consisting of clopen sets has a finite subcover) and CLP-compact topological groups. In particular, we extend a theorem on CLP-compactness of products from [J. Steprāns, A. Šostak, Restricted compactness properties and their preservation under products, Topology Appl. 101 (3) (2000) 213-229] and we offer various criteria for CLP-compactness for spaces and topological groups, that work particularly well for precompact groups. This allows us to show that arbitrary products of CLP-compact pseudocompact groups are CLP-compact. For every natural n we construct:
(i)
a totally disconnected, n-dimensional, pseudocompact CLP-compact group; and
(ii)
a hereditarily disconnected, n-dimensional, totally minimal, CLP-compact group that can be chosen to be either separable metrizable or pseudocompact (a Hausdorff group G is totally minimal when all continuous surjective homomorphisms GH, with a Hausdorff group H, are open).
  相似文献   

10.
A Tychonoff space X is RG if the embedding of C(X)→C(Xδ) is an epimorphism of rings. Compact RG-spaces are known and easily described. We study the pseudocompact RG-spaces. These must be scattered of finite Cantor Bendixon degree but need not be locally compact. However, under strong hypotheses, (countable compactness, or small cardinality) these spaces must, indeed, be compact. The main theorems shows, how to construct a suitable maximal almost disjoint family, and apply it to obtain examples of RG-spaces that are almost compact, locally compact, non-compact, almost-P, and of Cantor Bendixon degree 2. More complicated examples of pseudocompact non-compact RG-spaces ensue.  相似文献   

11.
12.
We consider the extraordinary dimension dimL introduced recently by Shchepin [E.V. Shchepin, Arithmetic of dimension theory, Russian Math. Surveys 53 (5) (1998) 975-1069]. If L is a CW-complex and X a metrizable space, then dimLX is the smallest number n such that ΣnL is an absolute extensor for X, where ΣnL is the nth suspension of L. We also write dimLf?n, where is a given map, provided dimLf−1(y)?n for every yY. The following result is established: Supposeis a perfect surjection between metrizable spaces, Y a C-space and L a countable CW-complex. Then conditions (1)-(3) below are equivalent:
(1)
dimLf?n;
(2)
There exists a dense andGδsubsetGofC(X,In)with the source limitation topology such thatdimL(f×g)=0for everygG;
(3)
There exists a mapis such thatdimL(f×g)=0;If, in addition, X is compact, then each of the above three conditions is equivalent to the following one;
(4)
There exists anFσsetAXsuch thatdimLA?n−1and the restriction mapf|(X?A)is of dimensiondimf|(X?A)?0.
  相似文献   

13.
We investigate the classes of spaces that can be mapped onto a metrizable space by a closed mapping with fibers having a given property P. We give some conditions which assure that such classes are closed under the action of perfect or open and compact mappings. Such a treatment includes the investigation of paracompact p-spaces and M-spaces. We also discuss spaces that can be mapped onto a metacompact Moore space.  相似文献   

14.
A class of Baire spaces, which contains many known examples and variations thereof, is described and it is shown that no space in this class contains a dense metrizable Gδ-subspace. This gives a class of semi-metrizable spaces which are not σ-spaces. We discuss the existence of Lindelöf semi-metrizable spaces which are not σ-spaces. This is of interest since the only known examples require the use of CH.  相似文献   

15.
The main results of the paper are as follows: covering characterizations of wQN-spaces, covering characterizations of QN-spaces and a theorem saying that Cp(X) has the Arkhangel'ski?ˇ property (α1) provided that X is a QN-space. The latter statement solves a problem posed by M. Scheepers [M. Scheepers, Cp(X) and Arhangel'ski?ˇ's αi-spaces, Topology Appl. 89 (1998) 265-275] and for Tychonoff spaces was independently proved by M. Sakai [M. Sakai, The sequence selection properties of Cp(X), Preprint, April 25, 2006]. As the most interesting result we consider the equivalence that a normal topological space X is a wQN-space if and only if X has the property S1(Γshr,Γ). Moreover we show that X is a QN-space if and only if Cp(X) has the property (α0), and for perfectly normal spaces, if and only if X has the covering property (β3).  相似文献   

16.
Collectionwise normal (CWN) and collectionwise Hausdorff (CWH) spaces have played an increasingly important role in topology since the introduction of these concepts by R.H. Bing in 1951 [3]. It has remained an open and frequently raised question as to whether CWH T3-spaces are CWN with respect to compact sets. Recently, a counterexample requiring the existence of measurable cardinals and having little additional topological structure was constructed by W.G. Fleissner and the author. In this paper, the author gives a simple example in ZFC of a CWH, first countable, perfect T3-space that is not CWN with respect to compact, metrizable sets, and, under Martin's Axiom, such an example that is also a Moore space. In addition, the author considers the analogous question for strongly collectionwise Hausdorff (SCWH) T3-spaces and characterizes the existence of SCWH T3-spaces that are not CWN with respect to compact sets in set-theoretic and box product formulations. The constructions utilized throughout the paper are of a general nature and several apparently new set-theoretic techniques for interchanging ‘points’ and ‘sets’ are introduced.  相似文献   

17.
For a compact Lie group G, we prove the existence of a universal G-space in the class of all paracompact (respectively, metrizable, and separable metrizable) free G-spaces. We show that such a universal free G-space cannot be compact.  相似文献   

18.
For X a metrizable space and (Y,ρ) a metric space, with Y pathwise connected, we compute the density of (C(X,(Y,ρ)),σ)—the space of all continuous functions from X to (Y,ρ), endowed with the supremum metric σ. Also, for (X,d) a metric space and (Y,‖⋅‖) a normed space, we compute the density of (UC((X,d),(Y,ρ)),σ) (the space of all uniformly continuous functions from (X,d) to (Y,ρ), where ρ is the metric induced on Y by ‖⋅‖). We also prove that the latter result extends only partially to the case where (Y,ρ) is an arbitrary pathwise connected metric space.To carry such an investigation out, the notions of generalized compact and generalized totally bounded metric space, introduced by the author and A. Barbati in a former paper, turn out to play a crucial rôle. Moreover, we show that the first-mentioned concept provides a precise characterization of those metrizable spaces which attain their extent.  相似文献   

19.
Let X be a Tychonoff space, H(X) the group of all self-homeomorphisms of X and the evaluation function. Call an admissible group topology on H(X) any topological group topology on H(X) that makes the evaluation function a group action. Denote by LH(X) the upper-semilattice of all admissible group topologies on H(X) ordered by the usual inclusion. We show that if X is a product of zero-dimensional spaces each satisfying the property: any two non-empty clopen subspaces are homeomorphic, then LH(X) is a complete lattice. Its minimum coincides with the clopen-open topology and with the topology of uniform convergence determined by a T2-compactification of X to which every self-homeomorphism of X continuously extends. Besides, since the left, the right and the two-sided uniformities are non-Archimedean, the minimum is also zero-dimensional. As a corollary, if X is a zero-dimensional metrizable space of diversity one, such as for instance the rationals, the irrationals, the Baire spaces, then LH(X) admits as minimum the closed-open topology induced by the Stone-?ech-compactification of X which, in the case, agrees with the Freudenthal compactification of X.  相似文献   

20.
In this paper we are concerned with the compactness properties of remainder terms of the Dyson-Phillips expansion of perturbed semigroups on general Banach spaces. More specifically, we derive conditions which ensure the compactness of the remainder term Rn(t) for some integer n. Our result applies directly to discuss the time asymptotic behaviour (for large times) of the solution of a one-dimensional transport equation with reentry boundary conditions on L1-spaces without regularity conditions on the initial data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号