首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
La0.6Sr0.4Co0.2Fe0.8O3 − δ-Ce0.8Gd0.2O1.9 (LSCF-CGO) thin films obtained by spray pyrolysis of a single precursor solution were investigated by XRD, TEM and impedance spectroscopy at annealing temperatures ranging from 500 to 900 °C. Films annealed at 600 °C contained a mixture of amorphous regions and crystalline regions composed of fine crystallites (< 5 nm). Annealing above 600 °C increased the ratio of crystalline to amorphous material, led to the segregation of the films into distinct LSCF and CGO phases, and promoted grain growth. The electrical behavior of the films depended on annealing temperature. At testing temperatures of 400 °C and below, the polarization resistance of films with lower annealing temperatures was larger than the polarization resistance of films with higher annealing temperatures. However, at testing temperatures of 500 °C and above the polarization resistance of films with lower annealing temperatures was equal to or lower than the polarization resistance of films with higher annealing temperatures. This was reflected by the activation energy that decreased with increasing annealing temperature. The varying electrical behavior may be related to microstructural changes that caused bulk diffusion to be the rate-limiting step in films with lower annealing temperatures and oxygen dissociation to be the rate-limiting step in films with higher annealing temperatures.  相似文献   

2.
ZnO thin films were epitaxially grown on sapphire (0 0 0 1) substrates by radio frequency magnetron sputtering. ZnO thin films were then annealed at different temperatures in air and in various atmospheres at 800 °C, respectively. The effect of the annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films are investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL). A strong (0 0 2) diffraction peak of all ZnO thin films shows a polycrystalline hexagonal wurtzite structure and high preferential c-axis orientation. XRD and AFM results reveal that the better structural quality, relatively smaller tensile stress, smooth, uniform of ZnO thin films were obtained when annealed at 800 °C in N2. Room temperature PL spectrum can be divided into the UV emission and the Visible broad band emission. The UV emission can be attributed to the near band edge emission (NBE) and the Visible broad band emission can be ascribed to the deep level emissions (DLE). By analyzing our experimental results, we recommend that the deep-level emission correspond to oxygen vacancy (VO) and interstitial oxygen (Oi). The biggest ratio of the PL intensity of UV emission to that of visible emission (INBE/IDLE) is observed from ZnO thin films annealed at 800 °C in N2. Therefore, we suggest that annealing temperature of 800 °C and annealing atmosphere of N2 are the most suitable annealing conditions for obtaining high quality ZnO thin films with good luminescence performance.  相似文献   

3.
Lithium (Li) and magnesium (Mg) co-doped zinc oxide (ZnO) thin films were deposited by sol–gel method using spin coating technique. The films were deposited on glass substrates and annealed at different temperatures. The effects of annealing temperature on the structural, optical and electrical properties of the deposited films were investigated using X-ray diffraction (XRD), Ultraviolet–Visible absorption spectra (UV–VIS), photoluminescence spectra (PL), X-ray photo electron spectroscopy (XPS) and Hall measurements. XRD patterns indicated that the deposited films had a polycrystalline hexagonal wurtzite structure with preferred (0 0 0 2) orientation. All films were found to exhibit a good transparency in the visible range. Analysis of the absorption edge revealed that the optical band gap energies of the films annealed at different temperatures varies between 3.49 eV and 3.69 eV. Room temperature PL spectra of the deposited films annealed at various temperatures consist of a near band edge emission and visible emission due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial zinc (Zni), interstitial oxygen (Oi) and zinc vacancy (VZn) which are generated during annealing process. The influence of annealing temperature on the chemical state of the dopants in the film was analysed by XPS spectra. Ion beam analysis (Rutherford back scattering) experiments were performed to evaluate the content of Li and Mg in the films. Hall measurements confirmed the p-type nature of the deposited films.  相似文献   

4.
ZnO:Ag films were grown on Si (1 0 0) substrates by ultrasonic spray pyrolysis at various substrate temperatures. The effect of deposition temperature on the structural and the room temperature photoluminescence (RT-PL) properties of ZnO:Ag films was studied. With the deposition temperature rising to 550 °C, the intensity of the near-band edge (NBE) emission at 378 nm decreased and a new emission peak at 399 nm was observed. On the basis of the X-ray diffraction pattern (XRD), the X-ray photoelectron (XPS) spectra of ZnO:Ag films, and the effects of annealing on the PL, we suggest that the 399 nm emission should be attributed to the electron transition from the conduction band to AgZn-related complexes defects radiative centers above the valence band.  相似文献   

5.
ZnO thin films were grown using Successive Ionic Layer Adsorption and Reaction (SILAR) method on glass substrates at room temperature. Annealing temperatures and film thickness effect on the structural, morphological, optical and electrical properties of the films were studied. For this as-deposited films were annealed at 200, 300, 400 and 500 °C for 30 min in oxygen atmosphere. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that the films are covered well with glass substrates and have good polycrystalline structure and crystalline levels. The film thickness effect on band gap values was investigated and band gap values were found to be within the range of 3.49-3.19 eV. The annealing temperature and light effect on electrical properties of the films were investigated and it was found that the current increased with increasing light intensity. The resistivity values were found as 105 Ω-cm for as-deposited films from electrical measurements. The resistivity decreased decuple with annealing temperature and decreased centuple with light emission for annealed films.  相似文献   

6.
Tungsten trioxide (WO3) thin films were prepared by thermal evaporation method onto quartz substrates at room temperature. Effect of annealing temperature (from 200 to 800 °C) to morphology, crystallographic structure and electrical properties were investigated. In order to investigate the temperature dependant resistivity properties of the films dark current–voltage measurements were done at the temperatures of 30, 60, 90, 120 and 150 °C. From the AFM pictures it is seen that the increasing annealing temperature causes an increase in grain sizes. At elevated temperatures the grains combine to each other and thus form continuous and homogenous surfaces. From the XRD patterns it was seen that the as-prepared and annealed films at 200, 300, 310 and 320 °C were amorphous. On the other hand at 330 °C and higher temperatures the films were found as in crystallized structures (monoclinic phase). From the current–voltage measurements it was seen that the contacts areohmic and the current increased with increasing temperatures. From the calculated values it was seen that the produced films shows good semiconducting nature.  相似文献   

7.
Thermal stability of Ag films in air prepared by thermal evaporation   总被引:1,自引:0,他引:1  
The thermal stability of silver films in air has been studied. Pure Ag films, 250 nm in thickness, were prepared on glass substrates by thermal evaporation process, and subsequently annealed in air for 1 h at temperatures between 200 and 400 °C. The structure and morphology of the samples were investigated by X-ray diffraction, Raman spectra and atomic force microscopy. It is found that the crystallization enhances for the annealed films, and film surface becomes oxidized when annealing temperature is higher than 350 °C. The electrical and optical properties of the films were studied by van der Pauw method and spectrophotometer, respectively. Reflectance drops sharply as Ag films are annealed at temperatures above 250 °C. Film annealed at 250 °C has the maximum surface roughness and the minimum reflectance at 600 nm optical wavelength. Film annealed at 200 °C has the minimum resistivity, and resistivity increases with the increasing of the annealing temperature when temperature is above 200 °C. The results show that both oxidization on film surface and agglomeration of silver film result in infinite of electrical resistivity as the annealing temperature is above 350 °C.  相似文献   

8.
To compare the annealing effects on GaMnAs-doped with Zn (GaMnAs:Zn) and undoped GaMnAs (u-GaMnAs) epilayers, we grew GaMnAs thin films at 200 °C by molecular beam epitaxy (MBE) on GaAs substrates, and they were annealed at temperatures ranging from 220 °C to 380 °C for 100 min in air. These epilayers were characterized by high-resolution X-ray diffraction (XRD), electrical, and magnetic measurements. A maximum resistivity at temperatures Tm close to the Curie temperatures Tc was observed from the measurement of the temperature-dependent resistivity ρ(T) for both the GaMnAs:Zn and the u-GaMnAs samples. We found, however, that the maximum temperature Tm observed for GaMnAs:Zn epilayers increased with increasing annealing temperature, which was different from the result with the u-GaMnAs epilayers. The formation of GaAs:Zn and MnAs or Mn-Zn-As complexes with increasing annealing temperature is most likely responsible for the differences in appearance.  相似文献   

9.
At room temperature deposited Ge films (thickness < 3 nm) homogeneously wet CaF2/Si(1 1 1). The films are crystalline but exhibit granular structure. The grain size decreases with increasing film thickness. The quality of the homogeneous films is improved by annealing up to 200 °C. Ge films break up into islands if higher annealing temperatures are used as demonstrated combining spot profile analysis low energy electron diffraction (SPA-LEED) with auger electron spectroscopy (AES). Annealing up to 600 °C reduces the lateral size of the Ge islands while the surface fraction covered by Ge islands is constant. The CaF2 film is decomposed if higher annealing temperatures are used. This effect is probably due to the formation of GeFx complexes which desorb at these temperatures.  相似文献   

10.
The L10 ordered FePt films have been prepared at 300 °C with a basic structure of CrRu/MgO/FePt, followed by a post-annealing process at temperatures from 200 to 350 °C. The magnetic properties and the microstructure of the films were investigated. It is found that coercivity of FePt films increases greatly from 3.57 to 9.1 kOe with the increasing annealing temperature from 200 to 350 °C. The loop slope of the M–H curves decreases with the increasing annealing temperature, which is due to the grain isolation induced by MgO underlayer diffusion during the annealing process. The underlayer diffusion could be a useful approach to prepare the FePt-based composite films for high-density recording media.  相似文献   

11.
Thin films of lead sulfide (PbS) nanoparticles embedded in an amorphous silica (SiO2) host were grown on Si(1 0 0) substrates at different temperatures by the pulsed laser deposition (PLD) technique. Surface morphology and photoluminescence (PL) properties of samples were analyzed with scanning electron microscopy (SEM) and a 458 nm Ar+ laser, respectively. The PL data show a blue-shift from the normal emission at ∼3200 nm in PbS bulk to ∼560-700 nm in nanoparticulate PbS powders and thin films. Furthermore, the PL emission of the films was red-shifted from that of the powders at ∼560 to ∼660 nm. The blue-shifting of the emission wavelengths from 3200 to ∼560-700 nm is attributed to quantum confinement of charge carriers in the restricted volume of nanoparticles, while the red-shift between powders and thin-film PbS nanoparticles is speculated to be due to an increase in the defect concentration. The red-shift increased slightly with an increase in deposition temperature, which suggests that there has been a relative growth in particle sizes during the PLD of the films at higher temperatures. Generally, the PL emission of the powders was more intense than that of the films, although the intensity of some of the films was improved marginally by post-deposition annealing at 400 °C. This paper compares the PL properties of powder and pulsed laser-deposited thin films of PbS nanoparticles and the effects of deposition temperatures.  相似文献   

12.
Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO2 thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO2 thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO2 thin films. The results show that the TiO2 thin films crystallize in anatase phase between 400 and 800 °C, and into the anatase-rutile phase at 1000 °C, and further into the rutile phase at 1200 °C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO2 thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 °C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.  相似文献   

13.
Au/SiO2 nanocomposite films were prepared by radio frequency sputtering technique and annealing. The above nanocomposite films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and atomic force microscopy (AFM). The surface of the nanocomposite films was uniform with the particle diameter of 100-300 nm. The size of Au crystallites increased on increasing annealing time. The luminescent behavior of the nanocomposite films was characterized by photoluminescence (PL) with different excitation wavelengths. Two emission peaks at around 525 nm and 560 nm were observed with the excitation wavelength at 325 nm. An intensive emission peak at around 325 nm was observed with the excitation wavelength at 250 nm, which is related to the defective structure of the amorphous SiO2 layer because of oxygen deficiency, and could be applied to many fields, such as ultraviolet laser and ultraviolet detector.  相似文献   

14.
Photoluminescent and optical properties of porous oxide films formed by two-step aluminum anodization at a constant potential of 30 V in sulfamic acid have been investigated after their annealing, ranging from room temperature up to 600 °C. X-ray diffraction reveals the amorphous nature of porous oxide films. Infrared and energy dispersive spectroscopy indicates the presence of sulfuric species incorporated in oxide films during the anodization. Photoluminescence (PL) measurements show PL bands in the range from 320 to 600 nm. There are two peaks in emission and excitation spectra. One emission peak is at constant wavelength centered at 460 nm and the other shifts from 390 to 475 nm, depending on excitation wavelength. For excitation spectra, one spectral peak is at constant wavelength at 270 nm and the other also shifts to longer wavelengths while increasing emission wavelength. Upon annealing of the as-prepared oxide films PL increases reaching maximum value at about 300 °C and then decreases. The results indicate the existence of two PL centers, one placed at surface of the pore wall, while the other positioned inside the oxide films.  相似文献   

15.
Ta (100 nm)/NdFeB (5 μm)/Ta (100 nm) films have been deposited onto Si substrates using triode sputtering (deposition rate ∼18 μm/h). A 2-step procedure was used: deposition at temperatures up to 400 °C followed by ex-situ annealing at higher temperatures. Post-deposition annealing temperatures above 650 °C are needed to develop high values of coercivity. The duration of the annealing time is more critical in anisotropic samples deposited onto heated substrates than in isotropic samples deposited at lower temperatures. For a given set of annealing conditions (750 °C/10′), high heating rates (?2000 °C/h) favour high coercivity in both isotropic and anisotropic films. The shape and size of Nd2Fe14B grains depend strongly on the heating rate.  相似文献   

16.
The behaviour of trap centres and luminescence centres has been investigated for fired and unfired natural quartz from bricks and sediments irradiated at 100 Gy and annealed at different temperatures in the range 350-700 °C. The annealing treatment affects thermoluminescence (TL) glow curve as various changes were observed. The higher sensitization occurred for an annealing in the region 550-600 °C. At this annealing temperature, it has been observed the emergence of two peaks arising at 96 and 180 °C. At lower annealing temperatures, these peaks are overlapped by the peaks localized at 90 and 195 °C, respectively. Concerning the fired quartz, the higher sensitization occurred for an annealing in the region 500-550 °C for peak temperature around 200 °C and an unusual desensitization for the peak temperature around 100 °C. The behaviour of the two types of quartz is analyzed regarding to their kinetic parameters and luminescence emission and compared to literature data.  相似文献   

17.
The (γ′-Fe4N/Si-N)n (n: number of layers) multilayer films and γ′-Fe4N single layer film synthesized on Si (1 0 0) substrates by direct current magnetron sputtering were annealed at different temperatures. The structures and magnetic properties of as-deposited films and films annealed at different temperatures were characterized using X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. The results showed that the insertion of Si-N layer had a significant influence on the structures and magnetic properties of γ′-Fe4N film. Without the addition of Si-N lamination, the iron nitride γ′-Fe4N tended to transform to α-Fe when annealed at the temperatures over 300 °C. However, the phase transition from γ′-Fe4N to ?-Fe3N occurred at annealing temperature of 300 °C for the multilayer films. Furthermore, with increasing annealing temperature up to 400 °C or above, ?-Fe3N transformed back into γ′-Fe4N. The magnetic investigations indicated that coercivity of magnetic phase γ′-Fe4N for as-deposited films decreased from 152 Oe (for single layer) to 57.23 Oe with increasing n up to 30. For the annealed multilayer films, the coercivity values decreased with increasing annealing temperature, except that the film annealed at 300 °C due to the appearance of phase ?-Fe3N.  相似文献   

18.
Al-N co-doped ZnO films were fabricated by gaseous ammonia annealing at various temperatures. The structure and the electrical properties of Al-N-doped ZnO films strongly depend on the annealing temperature. XRD and SEM analysis indicate that the ZnO films possess a good crystallinity with c-axis orientation, uniform thickness and dense surface. Optical transmission spectra show a high transmittance (∼85%) in the visible region. Hall measurement demonstrates that ZnO films have p-type conduction with high carrier concentration of 8.3 × 1018 cm−3 and low resistivity of 25.0 Ω cm when the annealing temperature is 700 °C. Also the growth process of Al-N co-doped at various temperatures is discussed in detail.  相似文献   

19.
ZnO thin films grown on Si(1 1 1) substrates by using atomic layer deposition (ALD) were annealed at the temperatures ranging from 300 to 500 °C. The X-ray diffraction (XRD) results show that the annealed ZnO thin films are highly (0 0 2)-oriented, indicating a well ordered microstructure. The film surface examined by the atomic force microscopy (AFM), however, indicated that the roughness increases with increasing annealing temperature. The photoluminescence (PL) spectrum showed that the intensity of UV emission was strongest for films annealed at 500 °C. The mechanical properties of the resultant ZnO thin films investigated by nanoindentation reveal that the hardness decreases from 9.2 GPa to 7.2 GPa for films annealed at 300 °C and 500 °C, respectively. On the other hand, the Young's modulus for the former is 168.6 GPa as compared to a value of 139.5 GPa for the latter. Moreover, the relationship between the hardness and film grain size appear to follow closely with the Hall-Petch equation.  相似文献   

20.
We have prepared SrTiO3/BaTiO3 thin films with multilayered structures deposited on indium tin oxide (ITO) coated glass by a sol-gel deposition and heating at 300-650 °C. The optical properties were obtained by UV-vis spectroscopy. The films show a high transmittance (approximately 85%) in the visible region. The optical band gap of the films is tunable in the 3.64-4.19 eV range by varying the annealing temperature. An abrupt decrease towards the bulk band gap value is observed at annealing temperatures above 600 °C. The multilayered film annealed at 650 ° C exhibited the maximum refractive index of 2.09-1.91 in the 450-750 nm wavelength range. The XRD and AFM results indicate that the films annealed above 600 ° C are substantially more crystalline than the films prepared at lower temperatures which were used to change their optical band gap and complex refractive index to an extent that depended on the annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号