首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A survey of scheduling with controllable processing times   总被引:3,自引:0,他引:3  
In classical deterministic scheduling problems, the job processing times are assumed to be constant parameters. In many practical cases, however, processing times are controllable by allocating a resource (that may be continuous or discrete) to the job operations. In such cases, each processing time is a decision variable to be determined by the scheduler, who can take advantage of this flexibility to improve system performance. Since scheduling problems with controllable processing times are very interesting both from the practical and theoretical point of view, they have received a lot of attention from researchers over the last 25 years. This paper aims to give a unified framework for scheduling with controllable processing times by providing an up-to-date survey of the results in the field.  相似文献   

2.
The single machine scheduling problem with two types of controllable parameters, job processing times and release dates, is studied. It is assumed that the cost of compressing processing times and release dates from their initial values is a linear function of the compression amounts. The objective is to minimize the sum of the total completion time of the jobs and the total compression cost. For the problem with equal release date compression costs we construct a reduction to the assignment problem. We demonstrate that if in addition the jobs have equal processing time compression costs, then it can be solved in O(n2) time. The solution algorithm can be considered as a generalization of the algorithm that minimizes the makespan and total compression cost. The generalized version of the algorithm is also applicable to the problem with parallel machines and to a range of due-date scheduling problems with controllable processing times.  相似文献   

3.
排序问题中优化准则关于基本参数的正则性及其应用   总被引:1,自引:0,他引:1  
本文提出了优化准则关于加工时间、准备时间、应交工时间的正则性,利用这种正则性对寻找参数可控排序问题中的有效值、有效解给出了一直观算法,并指出对一些具体的参数可控排序问题,其有效值、有效解的寻找可通过对这一直观算法加以具体化而得.文中还对平均流程问题给出了这样一个具体化算法.  相似文献   

4.
5.
In this paper we study divisible load scheduling in systems with limited memory. Divisible loads are parallel computations which can be divided into independent parts processed in parallel on remote computers, and the part sizes may be arbitrary. The distributed system is a heterogeneous single level tree. The total size of processor memories is too small to accommodate the whole load at any moment of time. Therefore, the load is distributed in many rounds. Memory reservations have block nature. The problem consists in distributing the load taking into account communication time, computation time, and limited memory buffers so that the whole processing finishes as early as possible. This problem is both combinatorial and algebraic in nature. Therefore, hybrid algorithms are given to solve it. Two algorithms are proposed to solve the combinatorial component. A branch-and-bound algorithm is nearly unusable due to its complexity. Then, a genetic algorithm is proposed with more tractable execution times. For a given solution of the combinatorial part we formulate the solution of the algebraic part as a linear programming problem. An extensive computational study is performed to analyze the impact of various system parameters on the quality of the solutions. From this we were able to infer on the nature of the scheduling problem.  相似文献   

6.
This paper deals with several bicriteria open-shop scheduling problems where jobs are pre-emptable and their corresponding time-windows must be strictly respected. The criteria are a performance cost and the makespan. Network flow approaches are used in a lexmin procedure with a bounded makespan and the considered bicriteria problems are solved. Finally, the computational complexity of the algorithm and a numerical example are reported.  相似文献   

7.
The paper deals with the single-machine scheduling problem in which job processing times as well as release dates are controllable parameters and they may vary within given intervals. While all release dates have the same boundary values, the processing time intervals are arbitrary. It is assumed that the cost of compressing processing times and release dates from their initial values is a linear function of the compression amount. The objective is to minimize the makespan together with the total compression cost. We construct a reduction to the assignment problem for the case of equal release date compression costs and develop an O(n2) algorithm for the case of equal release date compression costs and equal processing time compression costs. For the bicriteria version of the latter problem with agreeable processing times, we suggest an O(n2) algorithm that constructs the breakpoints of the efficient frontier.  相似文献   

8.
We consider a conservation law on a network and generic Riemann solvers at nodes depending on parameters, which can be seen as control functions. Assuming that the parameters have bounded variation as functions of time, we prove existence of solutions to Cauchy problems on the whole network.  相似文献   

9.
We consider a version of the total flow time single machine scheduling problem where uncertainty about processing times is taken into account. Namely an interval of equally possible processing times is considered for each job, and optimization is carried out according to a robustness criterion. We propose the first mixed integer linear programming formulation for the resulting optimization problem and we explain how some known preprocessing rules can be translated into valid inequalities for this formulation. Computational results are finally presented. Work funded by the Swiss National Science Foundation through project 200020-109854/1.  相似文献   

10.
This paper extends the previous work on multibin packing problems and gives a deeper insight into these models and their complexity, so as to provide a strong framework for future application-oriented studies. In a multibin problem, an object requires several bins to be packed. New models are represented, including the maximum cardinality multibin packing. Their complexity is studied and several pseudo-polynomial time algorithms are described, together with a fully polynomial time approximation scheme (FPTAS) for a fixed number of bins.  相似文献   

11.
The purpose of this paper is to illustrate the diversity of combinatorial problems encountered in the design of wireless switching systems. This is done via a representative selection of examples of real problems along with their associated solution methods. It should be emphasized that all the solution methods presented in this paper are successfully operating in the field at the time of writing. To the memory of my beloved father, French Navy Admiral Christian Sirdey, whose life was cut short by cancer on November the 13th, 2006.  相似文献   

12.
In this paper, we consider single-machine due window assignment and scheduling with a common flow allowance and controllable job processing times, subject to unlimited or limited resource availability. Due window assignment with a common flow allowance means that each job has a job-dependent due window, the starting time and completion time of which are equal to its actual processing time plus the job-independent parameters q1 and q2, respectively, which are common to all the jobs. The processing time of each job is either a linear or a convex function of the amount of a common continuously divisible resource allocated to the job. We study five versions of the problem that differ in terms of the objective function and processing time function being used. We provide structural properties of the optimal schedules and polynomial-time solution algorithms for the considered problems.  相似文献   

13.
The FFD algorithm is one of the most famous algorithms for the classical bin packing problem. In this paper,some versions of the FFD algorithm are considered in several bin packing problems. Especially,two of them applied to the bin packing problem with kernel items are analyzed. Tight worst-case performance ratios are obtained.  相似文献   

14.
In this study, we determine the upper and lower bounds for the processing time of each job under controllable machining conditions. The proposed bounding scheme is used to find a set of discrete efficient points on the efficient frontier for a bi-criteria scheduling problem on a single CNC machine. We have two objectives; minimizing the manufacturing cost (comprised of machining and tooling costs) and minimizing makespan. The technological restrictions of the CNC machine along with the job specific parameters affect the machining conditions; such as cutting speed and feed rate, which in turn specify the processing times and tool lives. Since it is well known that scheduling problems are extremely sensitive to processing time data, system resources can be utilized much more efficiently by selecting processing times appropriately.  相似文献   

15.
In many large-scale project scheduling problems, multiple projects are either taking place at the same time or scheduled into a tight sequence in order to efficiently share a common resource. One example of this is the computing resource allocation at an Application Service Provider (ASP) which provides data processing services for multiple paying customers. Typical services provided by ASPs are data mining, payroll processing, internet-based storage backup services and Customer Relation Management (CRM) services. The processing mode of an ASP can be either batch or concurrent, depending on the type service rendered. For example, for CPU intensive or long processing time required services, it would be more economical to processes one customer request at a time in order to minimize the context switching overhead. While the data transaction processes within a service request are subject to certain precedence relationships, the requests from different customers to an ASP are independent of each other, and the total time required to process a service request depends on the computing resource allocated to that request. The related issue of achieving an optimal use of resources at ASPs leads to problem of project scheduling with controllable project duration.In this paper, we present efficient algorithms for solving several special cases of such multi-project scheduling problems with controllable project duration and hard resource constraints. Two types of problems are considered. In type I, the duration of each project includes a constant and a term that is inversely proportional to the amount of resource allocated. In type II, the duration of each individual project is a continuous decreasing function of the amount of resource allocated.  相似文献   

16.
并行分批排序起源于半导体芯片制造过程。在并行分批排序中,工件可成批加工,批加工机器最多可同时加工B个工件,批的加工时间为批中所有工件的最大工时。首先根据传统的机器环境和目标函数对并行分批排序已有成果进行分类介绍,主要为单机和平行机的机器环境,以及极小化最大完工时间、极小化总完工时间、极小化最大延迟、极小化误工工件数、极小化总延误和极小化最大延误的目标函数;然后梳理了由基本问题所衍生出来的具有新特点的16类新型并行分批排序,包括差异尺寸工件、多目标、工件加工时间或顺序存在限制、考虑费用和具有特殊机制等情况;最后展望未来的研究方向。  相似文献   

17.
This paper studies online scheduling problems with reassignment on two identical machines. We can reassign some jobs under certain rules after all the jobs have been assigned. Three different versions are studied and optimal algorithms are proposed.  相似文献   

18.
We address a version of the Half-Product Problem and its restricted variant with a linear knapsack constraint. For these minimization problems of Boolean programming, we focus on the development of fully polynomial-time approximation schemes with running times that depend quadratically on the number of variables. Applications to various single machine scheduling problems are reported: minimizing the total weighted flow time with controllable processing times, minimizing the makespan with controllable release dates, minimizing the total weighted flow time for two models of scheduling with rejection.  相似文献   

19.
In most deterministic scheduling problems, job-processing times are regarded as constant and known in advance. However, in many realistic environments, job-processing times can be controlled by the allocation of a common resource to jobs. In this paper, we consider the problem of scheduling jobs with arbitrary release dates and due dates on a single machine, where job-processing times are controllable and are modeled by a non-linear convex resource consumption function. The objective is to determine simultaneously an optimal processing permutation as well as an optimal resource allocation, such that no job is completed later than its due date, and the total resource consumption is minimized. The problem is strongly NP\mathcal{NP}-hard. A branch and bound algorithm is presented to solve the problem. The computational experiments show that the algorithm can provide optimal solution for small-sized problems, and near-optimal solution for medium-sized problems in acceptable computing time.  相似文献   

20.
We are interested in models for vehicular traffic flow based on partial differential equations and their extensions to networks of roads. In this paper, we simplify a fluidodynamic traffic model and derive a new traffic flow model based on ordinary differential equations (ODEs). This is obtained by spatial discretization of an averaged density evolution and a suitable approximation of the coupling conditions at junctions of the network. We show that the new model inherits similar features of the full model, e.g., traffic jam propagation. We consider optimal control problems controlled by the ODE model and derive the optimality system. We present numerical results on the simulation and optimization of traffic flow in sample networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号