首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For K a set of topological spaces and X,YK, the notation XhY means that X embeds homeomorphically into Y; and XY means XhYhX. With , the equivalence relation ∼ on K induces a partial order h? well-defined on K/∼ as follows: if XhY.For posets (P,P?) and (Q,Q?), the notation (P,P?)?(Q,Q?) means: there is an injection such that p0P?p1 in P if and only if h(p0)Q?h(p1) in Q. For κ an infinite cardinal, a poset (Q,Q?) is a κ-universal poset if every poset (P,P?) with |P|?κ satisfies (P,P?)?(Q,Q?).The authors prove two theorems which improve and extend results from the extensive relevant literature.
Theorem 2.2. There is a zero-dimensional Hausdorff space S with|S|=κsuch that(P(S)/∼,h?)is a κ-universal poset.  相似文献   

2.
A topological group is minimal if it does not admit a strictly coarser Hausdorff group topology. The Roelcke uniformity (or lower uniformity) on a topological group is the greatest lower bound of the left and right uniformities. A group is Roelcke-precompact if it is precompact with respect to the Roelcke uniformity. Many naturally arising non-Abelian topological groups are Roelcke-precompact and hence have a natural compactification. We use such compactifications to prove that some groups of isometries are minimal. In particular, if U1 is the Urysohn universal metric space of diameter 1, the group Iso(U1) of all self-isometries of U1 is Roelcke-precompact, topologically simple and minimal. We also show that every topological group is a subgroup of a minimal topologically simple Roelcke-precompact group of the form Iso(M), where M is an appropriate non-separable version of the Urysohn space.  相似文献   

3.
In this paper, posets which may not be dcpos are considered. The concept of embedded bases for posets is introduced. Characterizations of continuity of posets in terms of embedded bases and Scott topology are given. The main results are:
(1)
A poset is continuous iff it is an embedded basis for a dcpo up to an isomorphism;
(2)
A poset is continuous iff its Scott topology is completely distributive;
(3)
A topological T0 space is a continuous poset equipped with the Scott topology in the specialization order iff its topology is completely distributive and coarser than or equal to the Scott topology;
(4)
A topological T1 space is a discrete space iff its topology is completely distributive.
These results generalize the relevant results obtained by J.D. Lawson for dcpos.  相似文献   

4.
Similarly as the sobriety is essential for representing continuous maps as frame homo-morphisms, also other separation axioms play a basic role in expressing topological phenomena in frame language. In particular,T D is equivalent with the correctness of viewing subspaces as sublocates, or with representability of open or closed maps as open or closed homomorphisms. A weaker separation axiom is equivalent with an algebraic recognizability whether the intersection of a system of open sets remains open or not. The role of sobriety is also being analyzed in some detail.In honour of Nico Pumplün on the occasion of his 60th birthdayThe support of the Italian C.N.R. is gratefully acknowledged.Partial financial support of the Italian M.U.R.S.T. is gratefully acknowledged.  相似文献   

5.
In this paper, consistent algebraic L-domains are considered. One algebraic and two topological characterization theorems for their directed completions are given. It is proved that eliminating a set of maximal elements with empty interior from an algebraic L-domain results a consistent algebraic L-domain whose directed completion is just the given algebraic L-domain up to isomorphism. It is also proved that the category CALDOM of consistent algebraic L-domains and Scott continuous maps is Cartesian closed and has the category ALDOM of algebraic L-domains and Scott continuous maps as a full reflective subcategory. Received January 8, 2005; accepted in final form June 15, 2005.  相似文献   

6.
We study the space of linear orders on a given set X, denoted by Op(X), endowed with the topology of pointwise convergence. We show, in particular, that if |X|=ω1 or |X|=ω0 then Op(X) is homeomorphic to ω12 and ω02, respectively.  相似文献   

7.
《Quaestiones Mathematicae》2013,36(3):445-449
Abstract

Some variations of Arhangel'skii inequality ∣X∣ = 2χ(X)L(X) for every Hausdorff space X [3], given in [2] and [6] are improved.  相似文献   

8.
E. C. Milner  M. Pouzet 《Order》1990,7(1):101-102
It is shown that the dimension of a poset is the smallest cardinal number such that there is an embedding of the poset into a strict product of linear orders.  相似文献   

9.
A notion of separation with respect to an interior operator in topology is introduced and some basic properties are presented. In particular, it is shown that this notion of separation with respect to an interior operator gives rise to a Galois connection between the collection of all subclasses of the class of topological spaces and the collection of all interior operators in topology. Characterizations of the fixed points of this Galois connection are given and examples are provided.  相似文献   

10.
We show that a Hausdorff paratopological group G admits a topological embedding as a subgroup into a topological product of Hausdorff first-countable (second-countable) paratopological groups if and only if G is ω-balanced (totally ω-narrow) and the Hausdorff number of G is countable, i.e., for every neighbourhood U of the neutral element e of G there exists a countable family γ of neighbourhoods of e such that ?VγVV−1⊆U. Similarly, we prove that a regular paratopological group G can be topologically embedded as a subgroup into a topological product of regular first-countable (second-countable) paratopological groups if and only if G is ω-balanced (totally ω-narrow) and the index of regularity of G is countable.As a by-product, we show that a regular totally ω-narrow paratopological group with countable index of regularity is Tychonoff.  相似文献   

11.
A partial frame is a meet-semilattice in which certain designated subsets are required to have joins, and finite meets distribute over these. The designated subsets are specified by means of a so-called selection function, denoted by S ; these partial frames are called S-frames.

We construct free frames over S-frames using appropriate ideals, called S-ideals. Taking S-ideals gives a functor from S-frames to frames. Coupled with the functor from frames to S-frames that takes S-Lindelöf elements, it provides a category equivalence between S-frames and a non-full subcategory of frames. In the setting of complete regularity, we provide the functor taking S-cozero elements which is right adjoint to the functor taking S-ideals. This adjunction restricts to an equivalence of the category of completely regular S-frames and a full subcategory of completely regular frames. As an application of the latter equivalence, we construct the Stone-? ech compactification of a completely regular S-frame, that is, its compact coreflection in the category of completely regular S-frames.

A distinguishing feature of the study of partial frames is that a small collection of axioms of an elementary nature allows one to do much that is traditional at the level of frames or locales and of uniform or nearness frames. The axioms are sufficiently general to include as examples of partial frames bounded distributive lattices, σ-frames, κ-frames and frames.  相似文献   

12.
The authors investigate the lattice Co(P) of convex subsets of a general partially ordered set P. In particular, they determine the conditions under which Co(P) and Co(Q) are isomorphic; and give necessary and sufficient conditions on a lattice L so that L is isomorphic to Co(P) for some P.  相似文献   

13.
In this paper, we introduce the notion of expanding topological space. We define the topological expansion of a topological space via local multi-homeomorphism over coproduct topology, and we prove that the coproduct family associated to any fractal family of topological spaces is expanding. In particular, we prove that the more a topological space expands, the finer the topology of its indexed states is. Using multi-homeomorphisms over associated coproduct topological spaces, we define a locally expandable topological space and we prove that a locally expandable topological space has a topological expansion. Specifically, we prove that the fractal manifold is locally expandable and has a topological expansion.  相似文献   

14.
《Quaestiones Mathematicae》2013,36(6):701-715
Abstract

The frame Sc(L) generated by closed sublocales of a locale L is known to be a natural Boolean (“discrete”) extension of a subfit L; also it is known to be its maximal essential extension. In this paper we first show that it is an essential extension of any L and that the maximal essential extensions of L and Sc(L) are isomorphic. The construction Sc is not functorial; this leads to the question of individual liftings of homomorphisms LM to homomorphisms Sc(L) → Sc(M). This is trivial for Boolean L and easy for a wide class of spatial L, M . Then, we show that one can lift all h : L2 for weakly Hausdor? L (and hence the spectra of L and Sc(L) are naturally isomorphic), and finally present liftings of h : LM for regular L and arbitrary Boolean M.  相似文献   

15.
16.
A topological space X is called linearly Lindelöf if every increasing open cover of X has a countable subcover. It is well known that every Lindelöf space is linearly Lindelöf. The converse implication holds only in particular cases, such as X being countably paracompact or if nw(X)<ω.Arhangel?skii and Buzyakova proved that the cardinality of a first countable linearly Lindelöf space does not exceed 02. Consequently, a first countable linearly Lindelöf space is Lindelöf if ω>02. They asked whether every linearly Lindelöf first countable space is Lindelöf in ZFC. This question is supported by the fact that all known linearly Lindelöf not Lindelöf spaces are of character at least ω. We answer this question in the negative by constructing a counterexample from MA+ω<02.A modification of Alster?s Michael space that is first countable is presented.  相似文献   

17.
Suppose that X is a topological space with preorder , and that –g, f are bounded upper semicontinuous functions on X such that g(x) f(y) whenever x y. We consider the question whether there exists a bounded increasing continuous function h on X such that g h f, and obtain an existence theorem that gives necessary and sufficient conditions. This result leads to an extension theorem giving conditions that allow a bounded increasing continuous function defined on an open subset of X to be extended to a function of the same type on X. The application of these results to extremally disconnected locally compact spaces is studied.Received: 26 May 2004  相似文献   

18.
For a compact Hausdorff abelian group K and its subgroup HK, one defines the g-closuregK(H) of H in K as the subgroup consisting of χK such that χ(an)?0 in T=R/Z for every sequence {an} in (the Pontryagin dual of K) that converges to 0 in the topology that H induces on . We prove that every countable subgroup of a compact Hausdorff group is g-closed, and thus give a positive answer to two problems of Dikranjan, Milan and Tonolo. We also show that every g-closed subgroup of a compact Hausdorff group is realcompact. The techniques developed in the paper are used to construct a close relative of the closure operator g that coincides with the Gδ-closure on compact Hausdorff abelian groups, and thus captures realcompactness and pseudocompactness of subgroups.  相似文献   

19.
We study CLP-compact spaces (every cover consisting of clopen sets has a finite subcover) and CLP-compact topological groups. In particular, we extend a theorem on CLP-compactness of products from [J. Steprāns, A. Šostak, Restricted compactness properties and their preservation under products, Topology Appl. 101 (3) (2000) 213-229] and we offer various criteria for CLP-compactness for spaces and topological groups, that work particularly well for precompact groups. This allows us to show that arbitrary products of CLP-compact pseudocompact groups are CLP-compact. For every natural n we construct:
(i)
a totally disconnected, n-dimensional, pseudocompact CLP-compact group; and
(ii)
a hereditarily disconnected, n-dimensional, totally minimal, CLP-compact group that can be chosen to be either separable metrizable or pseudocompact (a Hausdorff group G is totally minimal when all continuous surjective homomorphisms GH, with a Hausdorff group H, are open).
  相似文献   

20.
Let P be a preorder (i.e., reflexive, transitive relation) on a finite set X. The ideal polynomial of P is the function where dk is the number of ideals (i.e. downwards closed sets) of cardinality k in P. We provide upper bounds for the moduli of the roots of idealP(x) in terms of the width of P. We also provide examples of preorders with roots of large moduli. The results have direct applications to the generating polynomials counting open sets in finite topologies. Received December 15, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号