首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a novel Lagrangian method to find good feasible solutions in theoretical and empirical aspects. After investigating the concept of Lagrangian capacity, which is the value of the capacity constraint that Lagrangian relaxation can find an optimal solution, we formally reintroduce Lagrangian capacity suitable to the 0-1 multidimensional knapsack problem and present its new geometric equivalent condition including a new associated property. Based on the property, we propose a new Lagrangian heuristic that finds high-quality feasible solutions of the 0-1 multidimensional knapsack problem. We verify the advantage of the proposed heuristic by experiments. We make comparisons with existing Lagrangian approaches on benchmark data and show that the proposed method performs well on large-scale data.  相似文献   

2.
The paper presents a tight Lagrangian bound and an efficient dual heuristic for the flow interception problem. The proposed Lagrangian relaxation decomposes the problem into two subproblems that are easy to solve. Information from one of the subproblems is used within a dual heuristic to construct feasible solutions and is used to generate valid cuts that strengthen the relaxation. Both the heuristic and the relaxation are integrated into a cutting plane method where the Lagrangian bound is calculated using a subgradient algorithm. In the course of the algorithm, a valid cut is added and integrated efficiently in the second subproblem and is updated whenever the heuristic solution improves. The algorithm is tested on randomly generated test problems with up to 500 vertices, 12,483 paths, and 43 facilities. The algorithm finds a proven optimal solution in more than 75% of the cases, while the feasible solution is on average within 0.06% from the upper bound.  相似文献   

3.
We propose relaxation heuristics for the problem of maximum profit assignment of n tasks to m agents (n > m), such that each task is assigned to only one agent subject to capacity constraints on the agents. Using Lagrangian or surrogate relaxation, the heuristics perform a subgradient search obtaining feasible solutions. Relaxation considers a vector of multipliers for the capacity constraints. The resolution of the Lagrangian is then immediate. For the surrogate, the resulting problem is a multiple choice knapsack that is again relaxed for continuous values of the variables, and solved in polynomial time. Relaxation multipliers are used with an improved heuristic of Martello and Toth or a new constructive heuristic to find good feasible solutions. Six heuristics are tested with problems of the literature and random generated problems. Best results are less than 0.5% from the optimal, with reasonable computational times for an AT/386 computer. It seems promising even for problems with correlated coefficients.  相似文献   

4.
We develop and test a heuristic based on Lagrangian relaxation and problem space search to solve the generalized assignment problem (GAP). The heuristic combines the iterative search capability of subgradient optimization used to solve the Lagrangian relaxation of the GAP formulation and the perturbation scheme of problem space search to obtain high-quality solutions to the GAP. We test the heuristic using different upper bound generation routines developed within the overall mechanism. Using the existing problem data sets of various levels of difficulty and sizes, including the challenging largest instances, we observe that the heuristic with a specific version of the upper bound routine works well on most of the benchmark instances known and provides high-quality solutions quickly. An advantage of the approach is its generic nature, simplicity, and implementation flexibility.  相似文献   

5.
We consider the capacitated lot sizing problem with multiple items, setup time and unrelated parallel machines. The aim of the article is to develop a Lagrangian heuristic to obtain good solutions to this problem and good lower bounds to certify the quality of solutions. Based on a strong reformulation of the problem as a shortest path problem, the Lagrangian relaxation is applied to the demand constraints (flow constraint) and the relaxed problem is decomposed per period and per machine. The subgradient optimization method is used to update the Lagrangian multipliers. A primal heuristic, based on transfers of production, is designed to generate feasible solutions (upper bounds). Computational results using data from the literature are presented and show that our method is efficient, produces lower bounds of good quality and competitive upper bounds, when compared with the bounds produced by another method from the literature and by high-performance MIP software.  相似文献   

6.
轩华  刘静  李冰 《运筹与管理》2014,23(2):244-249
为满足实际生产环境对工件加工顺序和工件到达时间的要求,提出了具有新特征的单机总加权拖期调度问题,其特点体现在:工件有动态到达时间,且由工件优先级关系构成的优先级图为非连接图且存在环的情况,对该问题建立数学规划模型,在扩展Tang和Xuan等的基础上,提出了结合双向动态规划的拉格朗日松弛算法求解该问题。在该算法的设计中,提出双向动态规划算法求解拉格朗日松弛问题,使得它可处理优先级图中一个工件可能有多个紧前或紧后工件的情况,采用次梯度算法更新拉格朗日乘子,基于拉格朗日松弛问题的解设计启发式算法构造可行解。实验测试结果显示,所设计的拉格朗日松弛算法能够在较短的运行时间内得到令人满意的近优解,为更复杂的调度问题的求解提供了思路。  相似文献   

7.
This paper presents a smoothing heuristic for an NP-hard combinatorial problem. Starting with a convex Lagrangian relaxation, a pathfollowing method is applied to obtain good solutions while gradually transforming the relaxed problem into the original problem formulated with an exact penalty function. Starting points are drawn using different sampling techniques that use randomization and eigenvectors. The dual point that defines the convex relaxation is computed via eigenvalue optimization using subgradient techniques. The proposed method turns out to be competitive with the most recent ones. The idea presented here is generic and can be generalized to all box-constrained problems where convex Lagrangian relaxation can be applied. Furthermore, to the best of our knowledge, this is the first time that a Lagrangian heuristic is combined with pathfollowing techniques. The work was supported by the German Research Foundation (DFG) under grant No 421/2-1.  相似文献   

8.
We propose a Lagrangian heuristic for facility location problems with concave cost functions and apply it to solve the plant location and technology acquisition problem. The problem is decomposed into a mixed integer subproblem and a set of trivial single-variable concave minimization subproblems. We are able to give a closed-form expression for the optimal Lagrangian multipliers such that the Lagrangian bound is obtained in a single iteration. Since the solution of the first subproblem is feasible to the original problem, a feasible solution and an upper bound are readily available. The Lagrangian heuristic can be embedded in a branch-and-bound scheme to close the optimality gap. Computational results show that the approach is capable of reaching high quality solutions efficiently. The proposed approach can be tailored to solve many concave-cost facility location problems.  相似文献   

9.
Real-time vehicle rerouting problems with time windows   总被引:2,自引:0,他引:2  
This paper introduces and studies real-time vehicle rerouting problems with time windows, applicable to delivery and/or pickup services that undergo service disruptions due to vehicle breakdowns. In such problems, one or more vehicles need to be rerouted, in real-time, to perform uninitiated services, with the objective to minimize a weighted sum of operating, service cancellation and route disruption costs. A Lagrangian relaxation based-heuristic is developed, which includes an insertion based-algorithm to obtain a feasible solution for the primal problem. A dynamic programming based algorithm solves heuristically the shortest path problems with resource constraints that result from the Lagrangian relaxation. Computational experiments show that the developed Lagrangian heuristic performs very well.  相似文献   

10.
The problem of choosing a subset of elements with maximum diversity from a given set is known as the maximum diversity problem. Many algorithms and methods have been proposed for this hard combinatorial problem, including several highly sophisticated procedures. By contrast, in this paper we present a simple iterated greedy metaheuristic that generates a sequence of solutions by iterating over a greedy construction heuristic using destruction and construction phases. Extensive computational experiments reveal that the proposed algorithm is highly effective as compared to the best-so-far metaheuristics for the problem under consideration.  相似文献   

11.
This paper addresses the capacitated lot-sizing problem involving the production of multiple items on unrelated parallel machines. A production plan should be determined in order to meet the forecast demand for the items, without exceeding the capacity of the machines and minimize the sum of production, setup and inventory costs. A heuristic based on the Lagrangian relaxation of the capacity constraints and subgradient optimization is proposed. Initially, the heuristic is tested on instances of the single machine problem and results are compared with heuristics from the literature. For parallel machines and small problems the heuristic performance is tested against optimal solutions, and for larger problems it is compared with the lower bound provided by the Lagrangian relaxation.  相似文献   

12.
The geometric parameters of stability domains of Lagrangian solutions to the classical restricted three-body problem are quantitatively estimated. It is shown that these domains are ellipsoid-like plane figures stretched along the tangent to the circle that passes through the Lagrangian triangle solutions. A heuristic algorithm is proposed for determining the maximum size of these domains of attraction.  相似文献   

13.
Large scale set covering problems have often been approached by constructive greedy heuristics, and much research has been devoted to the design and evaluation of various greedy criteria for such heuristics. A criterion proposed by Caprara et al. (1999) is based on reduced costs with respect to the yet unfulfilled constraints, and the resulting greedy heuristic is reported to be superior to those based on original costs or ordinary reduced costs.We give a theoretical justification of the greedy criterion proposed by Caprara et al. by deriving it from a global optimality condition for general non-convex optimisation problems. It is shown that this criterion is in fact greedy with respect to incremental contributions to a quantity which at termination coincides with the deviation between a Lagrangian dual bound and the objective value of the feasible solution found.  相似文献   

14.
Based on a novel reformulation of the feasible region, we propose and analyze a partial Lagrangian relaxation approach for the unbalanced orthogonal Procrustes problem (UOP). With a properly selected Lagrangian multiplier, the Lagrangian relaxation (LR) is equivalent to the recent matrix lifting semidefinite programming relaxation (MSDR), which has much more variables and constraints. Numerical results show that (LR) is solved more efficiently than (MSDR). Moreover, based on the special structure of (LR), we successfully employ the well-known Frank–Wolfe algorithm to efficiently solve very large instances of (LR). The rate of the convergence is shown to be independent of the row-dimension of the matrix variable of (UOP). Finally, motivated by (LR), we propose a Lagrangian heuristic for (UOP). Numerical results show that it can efficiently find the global optimal solutions of some randomly generated instances of (UOP).  相似文献   

15.
Facility location models are applicable to problems in many diverse areas, such as distribution systems and communication networks. In capacitated facility location problems, a number of facilities with given capacities must be chosen from among a set of possible facility locations and then customers assigned to them. We describe a Lagrangian relaxation heuristic algorithm for capacitated problems in which each customer is served by a single facility. By relaxing the capacity constraints, the uncapacitated facility location problem is obtained as a subproblem and solved by the well-known dual ascent algorithm. The Lagrangian relaxations are complemented by an add heuristic, which is used to obtain an initial feasible solution. Further, a final adjustment heuristic is used to attempt to improve the best solution generated by the relaxations. Computational results are reported on examples generated from the Kuehn and Hamburger test problems.  相似文献   

16.
The single-source, capacitated plant location problem is considered. This problem differs from the capacitated plant location problem by the additional requirement that each customer must be supplied with all its demand from a single plant. An efficient heuristic solution, capable of solving large problem instances, is presented. The heuristic combines Lagrangian relaxation with restricted neighbourhood search. Computational experiments on two sets of problem instances are presented.  相似文献   

17.
This paper develops a model for designing a backbone network. It assumes the location of the backbone nodes, the traffic between the backbone nodes and the link capacities are given. It determines the links to be included in the design and the routes used by the origin destination pairs. The objective is to obtain the least cost design where the system costs consist of connection costs and queueing costs. The connection costs depend on link capacity and queueing costs are incurred by users due to the limited capacity of links. The Lagrangian relaxation embedded in a subgradient optimization procedure is used to obtain lower bounds on the optimal solution of the problem. A heuristic based on the Lagrangian relaxation is developed to generate feasible solutions.  相似文献   

18.
This paper investigates the development of an effective heuristic to solve the set covering problem (SCP) by applying the meta-heuristic Meta-RaPS (Meta-heuristic for Randomized Priority Search). In Meta-RaPS, a feasible solution is generated by introducing random factors into a construction method. Then the feasible solutions can be improved by an improvement heuristic. In addition to applying the basic Meta-RaPS, the heuristic developed herein integrates the elements of randomizing the selection of priority rules, penalizing the worst columns when the searching space is highly condensed, and defining the core problem to speedup the algorithm. This heuristic has been tested on 80 SCP instances from the OR-Library. The sizes of the problems are up to 1000 rows × 10,000 columns for non-unicost SCP, and 28,160 rows × 11,264 columns for the unicost SCP. This heuristic is only one of two known SCP heuristics to find all optimal/best known solutions for those non-unicost instances. In addition, this heuristic is the best for unicost problems among the heuristics in terms of solution quality. Furthermore, evolving from a simple greedy heuristic, it is simple and easy to code. This heuristic enriches the options of practitioners in the optimization area.  相似文献   

19.
The biquadratic assignment problem (BiQAP) is a generalization of the quadratic assignment problem (QAP). It is a nonlinear integer programming problem where the objective function is a fourth degree multivariable polynomial and the feasible domain is the assignment polytope. BiQAP problems appear in VLSI synthesis. Due to the difficulty of this problem, only heuristic solution approaches have been proposed. In this paper, we propose a new heuristic for the BiQAP, a greedy randomized adaptive search procedure (GRASP). Computational results on instances described in the literature indicate that this procedure consistently finds better solutions than previously described algorithms.  相似文献   

20.
We study a variant of the spanning tree problem where we require that, for a given connected graph, the spanning tree to be found has the minimum number of branch vertices (that is vertices of the tree whose degree is greater than two). We provide four different formulations of the problem and compare different relaxations of them, namely Lagrangian relaxation, continuous relaxation, mixed integer-continuous relaxation. We approach the solution of the Lagrangian dual both by means of a standard subgradient method and an ad-hoc finite ascent algorithm based on updating one multiplier at the time. We provide numerical result comparison of all the considered relaxations on a wide set of benchmark instances. A useful follow-up of tackling the Lagrangian dual is the possibility of getting a feasible solution for the original problem with no extra costs. We evaluate the quality of the resulting upper bound by comparison either with the optimal solution, whenever available, or with the feasible solution provided by some existing heuristic algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号