首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that every Abelian group satisfying a mild cardinal inequality admits a pseudocompact group topology from which all countable subgroups inherit the maximal totally bounded topology (we say that such a topology satisfies property ).Every pseudocompact Abelian group G with cardinality |G|≤22c satisfies this inequality and therefore admits a pseudocompact group topology with property . Under the Singular Cardinal Hypothesis (SCH) this criterion can be combined with an analysis of the algebraic structure of pseudocompact groups to prove that every pseudocompact Abelian group admits a pseudocompact group topology with property .We also observe that pseudocompact Abelian groups with property contain no infinite compact subsets and are examples of Pontryagin reflexive precompact groups that are not compact.  相似文献   

2.
A topological Abelian group G is called (strongly) self-dual if there exists a topological isomorphism Φ:GG of G onto the dual group G (such that Φ(x)(y)=Φ(y)(x) for all x,yG). We prove that every countably compact self-dual Abelian group is finite. It turns out, however, that for every infinite cardinal κ with κω=κ, there exists a pseudocompact, non-compact, strongly self-dual Boolean group of cardinality κ.  相似文献   

3.
A group G has all of its subgroups normal-by-finite if H/H G is finite for all subgroups H of G. The Tarski-groups provide examples of p-groups (p a “large” prime) of nonlocally finite groups in which every subgroup is normal-by-finite. The aim of this paper is to prove that a 2-group with every subgroup normal-by-finite is locally finite. We also prove that if |H/H G | 6 2 for every subgroup H of G, then G contains an Abelian subgroup of index at most 8.  相似文献   

4.
We study the duality properties of two rather different classes of subgroups of direct products of discrete groups (protodiscrete groups): P-groups, i.e., topological groups such that countable intersections of its open subsets are open, and protodiscrete groups of countable pseudocharacter (topological groups in which the identity is the intersection of countably many open sets). It was recently shown by the same authors that the direct product Π of an arbitrary family of discrete Abelian groups becomes reflexive when endowed with the ω-box topology. This was the first example of a non-discrete reflexive P-group. Here we present a considerable generalization of this theorem and show that every product of feathered (equivalently, almost metrizable) Abelian groups equipped with the P-modified topology is reflexive. In particular, every locally compact Abelian group with the P-modified topology is reflexive. We also examine the reflexivity of dense subgroups of products Π with the P-modified topology and obtain the first examples of non-complete reflexive P-groups. We find as well that the better behaved class of prodiscrete groups (complete protodiscrete groups) of countable pseudocharacter contains non-reflexive members—any uncountable bounded torsion Abelian group G of cardinality ω2 supports a topology τ such that (G,τ) is a non-reflexive prodiscrete group of countable pseudocharacter.  相似文献   

5.
We study compact, countably compact, pseudocompact, and functionally bounded sets in extensions of topological groups. A property P is said to be a three space property if, for every topological group G and a closed invariant subgroup N of G, the fact that both groups N and G/N have P implies that G also has P. It is shown that if all compact (countably compact) subsets of the groups N and G/N are metrizable, then G has the same property. However, the result cannot be extended to pseudocompact subsets, a counterexample exists under p=c. Another example shows that extensions of groups do not preserve the classes of realcompact, Dieudonné complete and μ-spaces: one can find a pseudocompact, non-compact Abelian topological group G and an infinite, closed, realcompact subgroup N of G such that G/N is compact and all functionally bounded subsets of N are finite. Several examples given in the article destroy a number of tempting conjectures about extensions of topological groups.  相似文献   

6.
7.
We show that the existence of a non-metrizable compact subspace of a topological group G often implies that G contains an uncountable supersequence (a copy of the one-point compactification of an uncountable discrete space). The existence of uncountable supersequences in a topological group has a strong impact on bounded subsets of the group. For example, if a topological group G contains an uncountable supersequence and K is a closed bounded subset of G which does not contain uncountable supersequences, then any subset A of K is bounded in G?(K?A). We also show that every precompact Abelian topological group H can be embedded as a closed subgroup into a precompact Abelian topological group G such that H is bounded in G and all bounded subsets of the quotient group G/H are finite. This complements Ursul's result on closed embeddings of precompact groups to pseudocompact groups.  相似文献   

8.
We prove that, when G is a group equipped with a Baire and metrizable topology, if there is a second category dense subset S of G such that the right translations ρs and ρs−1 are continuous for all sS and each left translation λs, sG, is almost-continuous (defined below) on a residual subset of G, then G is a topological group. Among other consequences, this yields that when G is a second countable locally compact right topological group, its topological centre is a topological group.  相似文献   

9.
Let G be a topological group with the identity element e. Given a space X, we denote by Cp(X,G) the group of all continuous functions from X to G endowed with the topology of pointwise convergence, and we say that X is: (a) G-regular if, for each closed set FX and every point xX?F, there exist fCp(X,G) and gG?{e} such that f(x)=g and f(F)⊆{e}; (b) G?-regular provided that there exists gG?{e} such that, for each closed set FX and every point xX?F, one can find fCp(X,G) with f(x)=g and f(F)⊆{e}. Spaces X and Y are G-equivalent provided that the topological groups Cp(X,G) and Cp(Y,G) are topologically isomorphic.We investigate which topological properties are preserved by G-equivalence, with a special emphasis being placed on characterizing topological properties of X in terms of those of Cp(X,G). Since R-equivalence coincides with l-equivalence, this line of research “includes” major topics of the classical Cp-theory of Arhangel'ski? as a particular case (when G=R).We introduce a new class of TAP groups that contains all groups having no small subgroups (NSS groups). We prove that: (i) for a given NSS group G, a G-regular space X is pseudocompact if and only if Cp(X,G) is TAP, and (ii) for a metrizable NSS group G, a G?-regular space X is compact if and only if Cp(X,G) is a TAP group of countable tightness. In particular, a Tychonoff space X is pseudocompact (compact) if and only if Cp(X,R) is a TAP group (of countable tightness). Demonstrating the limits of the result in (i), we give an example of a precompact TAP group G and a G-regular countably compact space X such that Cp(X,G) is not TAP.We show that Tychonoff spaces X and Y are T-equivalent if and only if their free precompact Abelian groups are topologically isomorphic, where T stays for the quotient group R/Z. As a corollary, we obtain that T-equivalence implies G-equivalence for every Abelian precompact group G. We establish that T-equivalence preserves the following topological properties: compactness, pseudocompactness, σ-compactness, the property of being a Lindelöf Σ-space, the property of being a compact metrizable space, the (finite) number of connected components, connectedness, total disconnectedness. An example of R-equivalent (that is, l-equivalent) spaces that are not T-equivalent is constructed.  相似文献   

10.
We say that a complex valued function defined on an Abelian group G is a local polynomial, if its restriction to every finitely generated subgroup of G is a polynomial. We prove that local spectral synthesis (that is, spectral synthesis using local polynomials instead of polynomials) holds on every Abelian group having countable torsion free rank. More precisely, there is a cardinal ω 1κ≦2 ω such that local spectral synthesis holds on an Abelian group G if and only if the torsion free rank of G is less than κ.  相似文献   

11.
P is the class of pseudocompact Hausdorff topological groups, and P is the class of groups which admit a topology T such that (G,T)∈P. It is known that every G=(G,T)∈P is totally bounded, so for GP the supremum T(G) of all pseudocompact group topologies on G and the supremum T#(G) of all totally bounded group topologies on G satisfy TT#.The authors conjecture for abelian GP that T=T#. That equality is established here for abelian GP with any of these (overlapping) properties. (a) G is a torsion group; (b) |G|?c2; (c) r0(G)=|G|=ω|G|; (d) |G| is a strong limit cardinal, and r0(G)=|G|; (e) some topology T with (G,T)∈P satisfies w(G,T)?c; (f) some pseudocompact group topology on G is metrizable; (g) G admits a compact group topology, and r0(G)=|G|. Furthermore, the product of finitely many abelian GP, each with the property T(G)=T#(G), has the same property.  相似文献   

12.
Let G be compact abelian group such that w(C(G))=w(Cω(G)). We prove that if
|C(G)|?m(G/C(G)),  相似文献   

13.
Two non-discrete Hausdorff group topologies τ1, τ2 on a group G are called transversal if the least upper bound τ1τ2 of τ1 and τ2 is the discrete topology. We show that a countable group G admitting non-discrete Hausdorff group topologies admits c2 pairwise transversal complete group topologies on G (so c2 maximal group topologies). Moreover, every abelian group G admits 2|G|2 pairwise transversal complete group topologies.  相似文献   

14.
15.
We study the class Wof Hausdorff topological groups Gfor which the following two cardinal invariants coincide

ES(G)=min{|H|:HGdense and essential}

TD(G)=min{|H|:HGtotally dense}

We prove that W contains the following classes:locally compact abelian groups, compact connected groups, countably compact totally discon¬nected abelian groups, topologically simple groups, locally compact Abelian groups when endowed with their Bohr topology, totally minimal abelian groups and free Abelian topological groups. For all these classes we are also able to giv ean explicit computation of the common value of ESand TD.  相似文献   

16.
We study the group properties of the spectrum of a strongly continuous unitary representation of a locally compact Abelian group G implementing an ergodic group of 1-automorphisms of a von Neumann algebra R. It is shown that in many cases the spectrum equals the dual group of G; e.g. if G is the integers and R not finite dimensional and Abelian, then the spectrum is the circle group.  相似文献   

17.
In (Electron. J. Combin. 10 (2003); http://www.combinatorics.org/volume-10/Abstracts/v1oi1r28.html), the first author (Yuliya Gryshko) asked three questions. Is it true that every infinite group admitting a 2-coloring without infinite monochromatic symmetric subsets is either almost cyclic (i.e., have a finite index subgroup which is cyclic infinite) or countable locally finite? Does every infinite group G include a monochromatic symmetric subset of any cardinal <|G| for any finite coloring? Does every uncountable group G such that |B(G)|< |G| where B(G)={xG:x2=1}, admit a 2-coloring without monochromatic symmetric subsets of cardinality |G|? We answer the first question positively. Assuming the generalized continuum hypothesis (GCH), we give a positive answer to the second question in the abelian case. Finally, we build a counter-example for the third question and we give a necessary and sufficient condition for an infinite group G to admit 2-coloring without monochromatic symmetric subsets of cardinality |G|. This generalizes some results of Protasov on infinite abelian groups (Mat. Zametki 59 (1996) 468–471; Dopovidi NAN Ukrain 1 (1999) 54–57).  相似文献   

18.
A. Dooms  E. Jespers 《代数通讯》2013,41(9):2879-2888
In this article we construct free groups and subgroups of finite index in the unit group of the integral group ring of a finite non-Abelian group G for which every nonlinear irreducible complex representation is of degree 2 and with commutator subgroup G′ a central elementary Abelian 2-group.  相似文献   

19.
We show that every Abelian group G with r0(G)=|G|=|G|ω admits a pseudocompact Hausdorff topological group topology T such that the space (G,T) is Fréchet-Urysohn. We also show that a bounded torsion Abelian group G of exponent n admits a pseudocompact Hausdorff topological group topology making G a Fréchet-Urysohn space if for every prime divisor p of n and every integer k≥0, the Ulm-Kaplansky invariant fp,k of G satisfies (fp,k)ω=fp,k provided that fp,k is infinite and fp,k>fp,i for each i>k.Our approach is based on an appropriate dense embedding of a group G into a Σ-product of circle groups or finite cyclic groups.  相似文献   

20.
In this paper we study the probability that the commutator of two randomly chosen elements in a finite group is equal to a given element of that group. Explicit computations are obtained for groups G which |G| is prime and GZ(G) as well as for groups G which |G| is prime and GZ(G)=1. This paper extends results of Rusin [see D.J. Rusin, What is the probability that two elements of a finite group commute? Pacific J. Math. 82 (1) (1979) 237-247].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号