首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
混合作业是经典的自由作业和异序作业的一种综合,其中一些工件可以按任意的机器顺序进行处理,而另一些工件必须遵守预先指定的机器顺序.本文研究安装、加工和拆卸时间分离的两台机器混合作业排序问题,该问题已经被知道是强NP困难的,本文把流水作业中的同顺序作业概念推广到混合作业,并得到这个混合作业问题在同顺序意义下的最优解,这个解对于一般情形是3/2近似解,但对于一些有意义的特殊情形是整体最优的.  相似文献   

2.
The parallel shop and the open shop are two machine environments that have received much attention in the literature of scheduling theory. A common generalization—the open shop with parallel machines—is considered in this paper. Polynomial-time algorithms are presented for obtaining minimum-length preemptive schedules for three cases. Open shops with single-operation machines of equal speed are scheduled with essentially no more difficulty than an ordinary open shop. Open shops with multiple-operation machines of equal speed are scheduled with the aid of a sequence of network flow computations. The general open shop problem with parallel machines of arbitrary speeds can be solved by linear programming, in much the same way as an optimal preemptive schedule can be found for unrelated parallel machines.  相似文献   

3.
Flexible manufacturing systems (FMSs) are automated factories in which many different part types are produced simultaneously. The tool-loading problem now adds further to the delicate task of finding an optimal schedule for such systems. In this paper, a tabu search approach is developed to solve the job shop scheduling problem with tooling constraints.  相似文献   

4.
We consider a two-machine flow shop problem with a common due date where the objective is to minimize the sum of functions which penalize early as well as tardy completion of jobs. Since the problem is NP-hard in the strong sense, we investigate some general properties of optimal schedules for the problem, we develop lower and upper bounds, derive dominance criteria, and propose an enumerative algorithm for finding an optimal schedule. The performance of the proposed algorithm together with the influence of the individual components is thoroughly discussed.  相似文献   

5.
In this paper, we study two versions of the two machine flow shop scheduling problem, where schedule length is to be minimized. First, we consider the two machine flow shop with setup, processing, and removal times separated. It is shown that an optimal solution need not be a permutation schedule, and that the problem isNP-hard in the strong sense, which contradicts some known results. The tight worst-case bound for an optimal permutation solution in proportion to a global optimal solution is shown to be 3/2. An O(n) approximation algorithm with this bound is presented. Secondly, we consider the two machine flow shop with finite storage capacity. Again, it is shown that there may not exist an optimal solution that is a permutation schedule, and that the problem isNP-hard in the strong sense.  相似文献   

6.
We study the two-machine flow shop problem with minimum delays. The problem is known to be strongly NP-hard even in the case of unit processing times and to be approximable within a factor of 2 of the length of an optimal schedule in the general case. The question whether there exists a polynomial-time algorithm with a better approximation ratio has been posed by several researchers but still remains open. In this paper, we improve the above bound to 3/2 for the special case of the problem when both operations of each job have equal processing times (this case of flow shop is known as the proportionate flow shop). Our analysis of the algorithm relies upon a nontrivial generalization of the lower bound established by W. Yu for the case of unit processing times.  相似文献   

7.
对于自由作业问题,在安排工件时避免不必要空闲所得的时间表称为稠密时间表.稠密时间表的加工总长不超过最优值的2-1/m倍,是一个在机器数m6时尚未被证明的猜想.本文通过引入工件与机器特征函数及机器关于工件非间断等概念,研究当最后完工机器至多有两个空闲区间时,性能比猜想成立的充分条件.  相似文献   

8.
We propose an extension to the flow shop scheduling problem named Heterogeneous Flow Shop Scheduling Problem (Het-FSSP), where two simultaneous issues have to be resolved: finding the best worker assignment to the workstations, and solving the corresponding scheduling problem. This problem is motivated by Sheltered Work centers for Disabled, whose main objective is the labor integration of persons with disabilities, an important aim not only for these centers but for any company desiring to overcome the traditional standardized vision of the workforce. In such a scenario the goal is to maintain high productivity levels by minimizing the maximum completion time, while respecting the diverse capabilities and paces of the heterogeneous workers, which increases the complexity of finding an optimal schedule. We present a mathematical model that extends a flow shop model to admit a heterogeneous worker assignment, and propose a heuristic based on scatter search and path relinking to solve the problem. Computational results show that this approach finds good solutions within a short time, providing the production managers with practical approaches for this combined assignment and scheduling problem.  相似文献   

9.
The job insertion problem in multi-stage scheduling is: given a schedule for n jobs and an additional job, find a feasible insertion of the additional job into the schedule that minimizes the resulting makespan. We prove that finding the optimal job insertion is NP-hard for flow shops and open shops.  相似文献   

10.
Optimal schedules in the job shop problem with preemption and with the objective of minimizing an arbitrary regular function of operation completion times are studied. It is shown that for any instance of the problem there always exists an optimal schedule that meets several remarkable properties. Firstly, each changeover date coincides with the completion time of some operation, and so, the number of changeover dates is not greater than the total number of operations, while the total number of interruptions of the operations is no more than the number of operations minus the number of jobs. Secondly, every changeover date is “super-integral”, which means that it is equal to the total processing time of some subset of operations. And thirdly, the optimal schedule with these properties can be found by a simple greedy algorithm under properly defined priorities of operations on machines. It is also shown that for any instance of the job shop problem with preemption allowed there exists a finite set of its feasible schedules which contains at least one optimal schedule for any regular objective function (from the continuum set of regular functions).  相似文献   

11.
In this paper, we consider the problem of providing flexibility to solutions of two-machine shop scheduling problems. We use the concept of group-scheduling to characterize a whole set of schedules so as to provide more choice to the decision-maker at any decision point. A group-schedule is a sequence of groups of permutable operations defined on each machine where each group is such that any permutation of the operations inside the group leads to a feasible schedule. Flexibility of a solution and its makespan are often conflicting, thus we search for a compromise between a low number of groups and a small value of makespan. We resolve the complexity status of the relevant problems for the two-machine flow shop, job shop and open shop. A number of approximation algorithms are developed and their worst-case performance is analyzed. For the flow shop, an effective heuristic algorithm is proposed and the results of computational experiments are reported.  相似文献   

12.
We study the optimality of the very practical policy of equal allocation of jobs to batches in batch scheduling problems on an m-machine open shop. The objective is minimum makespan. We assume unit processing time jobs, machine-dependent setup times and batch availability. We show that equal allocation is optimal for a two-machine and a three-machine open shop. Although, this policy is not necessarily optimal for larger size open shops, it is shown numerically to produce very close-to-optimal schedules.  相似文献   

13.
In practical task scheduling it is sometimes required that the components of a system perform consecutively. Such a scheduling is called scheduling without waiting periods or no-wait and/or no-idle. In this article we study the complexity of some simplified scheduling problems of this kind in open shop and flow shop settings. In particular, we show that many trivial questions about the existence of schedule become NP-hard, even if there are only two machines or if the scheduling graph of a system is a path or a cycle.  相似文献   

14.
In this work we show that certain classical preemptive shop scheduling problems with integral data satisfy the following integer preemption property: there exists an optimal preemptive schedule where all interruptions and all starting and completion times occur at integral dates. We also give new upper bounds on the minimal number of interruptions for various shop scheduling problems.  相似文献   

15.
针对具有退化工件的排序模型,考虑了单机排序和两台机器流水作业的工期窗口安排问题,在这一模型中,工件的加工时间是与其开工时间和退化率有关的一个线性函数。目标是找到一个最优排序和确定工期窗口的开始时间及大小以便最小化所有工件的费用函数,费用函数由四部分组成:提前、延误、工期窗口开始时间和工期窗口大小。对所研究的单机问题,详细地讨论了符合现实情况的几种类型问题,并得到了问题的最优解;对两台机器流水作业问题,给出了多项式算法。  相似文献   

16.
In 1954, Johnson gave an efficient algorithm for minimizing makespan in a two-machine flow shop; there is no advantage to preemption in this case. McNaughton's wrap-around rule of 1959 finds a shortest preemptive schedule on identical parallel machines in linear time. A similarly efficient algorithm is unlikely to exist for the simplest common generalization of these problems. We show that preemptive scheduling in a two-stage flow shop with at least two identical parallel machines in one of the stages so as to minimize makespan is NP-hard in the strong sense.  相似文献   

17.
The paper is devoted to some flow shop scheduling problems, where job processing times are defined by functions dependent on their positions in the schedule. An example is constructed to show that the classical Johnson's rule is not the optimal solution for two different models of the two-machine flow shop scheduling to minimize makespan. In order to solve the makespan minimization problem in the two-machine flow shop scheduling, we suggest Johnson's rule as a heuristic algorithm, for which the worst-case bound is calculated. We find polynomial time solutions to some special cases of the considered problems for the following optimization criteria: the weighted sum of completion times and maximum lateness. Some furthermore extensions of the problems are also shown.  相似文献   

18.
In this paper it is shown, through computational results, that a schedule generation algorithm originally designed for the traditional job shop model can still provide good results, in terms of CPU time and solution accuracy, when applied to the flexible manufacturing system (FMS) model. For this, we use two algorithms, for the job shop and the FMS, that generate all active schedules. Both algorithms are improved, by adding to them a branch-and-bound approach, and their behaviour is compared.  相似文献   

19.
The paper considers a problem of scheduling n jobs in a two-machine open shop to minimise the makespan, provided that preemption is not allowed and the interstage transportation times are involved. In general, this problem is known to be NP-hard. We present a linear time algorithm that finds an optimal schedule if no transportation time exceeds the smallest of the processing times. We also describe an algorithm that creates a heuristic solution to the problem with job-independent transportation times. Our algorithm provides a worst-case performance ratio of 8/5 if the transportation time of a job depends on the assigned processing route. The ratio reduces to 3/2 if all transportation times are equal.  相似文献   

20.
This paper presents a fuzzy bilevel programming approach to solve the flow shop scheduling problem. The problem considered here differs from the standard form in that operators are assigned to the machines and imposing a hierarchy of two decision makers with fuzzy processing times. The shop owner considered higher level and assigns the jobs to the machines in order to minimize the flow time while the customer is the lower level and decides on a job schedule in order to minimize the makespan. In this paper, we use the concepts of tolerance membership function at each level to define a fuzzy decision model for generating optimal (satisfactory) solution for bilevel flow shop scheduling problem. A solution algorithm for solving this problem is given. Mathematics Subject Classification: 90C70, 90B36, 90C99  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号