首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We characterize separable metrizable spaces that have small transfinite dimension and metrizable spaces that have large transfinite dimension modifying two classical characterizations of countable-dimensional spaces and applying the notion of a strongly point-finite family.  相似文献   

2.
A metric space (X,d) has the de Groot property GPn if for any points x0,x1,…,xn+2∈X there are positive indices i,j,k?n+2 such that ij and d(xi,xj)?d(x0,xk). If, in addition, k∈{i,j} then X is said to have the Nagata property NPn. It is known that a compact metrizable space X has dimension dim(X)?n iff X has an admissible GPn-metric iff X has an admissible NPn-metric.We prove that an embedding f:(0,1)→X of the interval (0,1)⊂R into a locally connected metric space X with property GP1 (resp. NP1) is open, provided f is an isometric embedding (resp. f has distortion Dist(f)=‖fLip⋅‖f−1Lip<2). This implies that the Euclidean metric cannot be extended from the interval [−1,1] to an admissible GP1-metric on the triode T=[−1,1]∪[0,i]. Another corollary says that a topologically homogeneous GP1-space cannot contain an isometric copy of the interval (0,1) and a topological copy of the triode T simultaneously. Also we prove that a GP1-metric space X containing an isometric copy of each compact NP1-metric space has density ?c.  相似文献   

3.
Two-dimension-like functions are constructed on the class of all Tychonoff spaces. Several of their properties, analogous to those of the classical dimension functions, are established.  相似文献   

4.
It is shown, using a non-measurable partition of the real line, that the covering dimension of a modified Niemytzki space is infinite while its Katêtov dimension is zero.  相似文献   

5.
We introduce a general method of resolving first countable, compact spaces that allows accurate estimate of inductive dimensions. We apply this method to construct, inter alia, for each ordinal number α>1 of cardinality ?c, a rigid, first countable, non-metrizable continuum Sα with . Sα is the increment in some compactification of [0,1) and admits a fully closed, ring-like map onto a metric continuum. Moreover, every subcontinuum of Sα is separable. Additionally, Sα can be constructed so as to be: (1) a hereditarily indecomposable Anderson-Choquet continuum with covering dimension a given natural number n, provided α>n, (2) a hereditarily decomposable and chainable weak Cook continuum, (3) a hereditarily decomposable and chainable Cook continuum, provided α is countable, (4) a hereditarily indecomposable Cook continuum with covering dimension one, or (5) a Cook continuum with covering dimension two, provided α>2.We also produce a chainable and hereditarily decomposable space Sω(c+) with , , trind0Sω(c+) and trInd0Sω(c+) all equal to ω(c+), the first ordinal of cardinality c+.  相似文献   

6.
We show that any metacompact Moore space is monotonically metacompact and use that result to characterize monotone metacompactness in certain generalized ordered (GO) spaces. We show, for example, that a generalized ordered space with a σ-closed-discrete dense subset is metrizable if and only if it is monotonically (countably) metacompact, that a monotonically (countably) metacompact GO-space is hereditarily paracompact, and that a locally countably compact GO-space is metrizable if and only if it is monotonically (countably) metacompact. We give an example of a non-metrizable LOTS that is monotonically metacompact, thereby answering a question posed by S.G. Popvassilev. We also give consistent examples showing that if there is a Souslin line, then there is one Souslin line that is monotonically countable metacompact, and another Souslin line that is not monotonically countably metacompact.  相似文献   

7.
8.
For each pair of positive integers k and m with k?m there exists a separable metrizable space X(k,m) such that cmpX(k,m)=k and defX(k,m)=m. This solves Problem 6 from [J.M. Aarts, T. Nishiura, Dimension and Extensions, North-Holland, Amsterdam, 1993, p. 71].  相似文献   

9.
This paper studies properties of refinable maps and contains applications to dimension theory. It is proved that refinable maps between compact Hausdorff spaces preserve covering dimension exactly and do not raise small cohomological dimension with any coefficient group. The notion of a c-refinable map is introduced and is shown to play a comparable role in the setting of normal spaces. For example, c-refinable maps between normal spaces are shown to preserve covering dimension and S-weak infinite-dimensionality. These facts do not hold for refinable maps.  相似文献   

10.
We give an example of a perfectly normal first countable space X1 with ind X1 = 1 such that if Z is a Lindelöf space containing X1. then ind Z=dim Z=∞. Under CH, there is a perfectly normal, hereditarily separable and first countable such space.  相似文献   

11.
In [V.V. Fedorchuk, Questions on weakly infinite-dimensional spaces, in: E.M. Pearl (Ed.), Open Problems in Topology II, Elsevier, Amsterdam, 2007, pp. 637-645; V.V. Fedorchuk, Weakly infinite-dimensional spaces, Russian Math. Surveys 42 (2) (2007) 1-52] classes w-m-C of weakly infinite-dimensional spaces, 2?m?∞, were introduced. We prove that all of them coincide with the class wid of all weakly infinite-dimensional spaces in the Alexandroff sense. We show also that transfinite dimensions dimwm, introduced in [V.V. Fedorchuk, Questions on weakly infinite-dimensional spaces, in: E.M. Pearl (Ed.), Open Problems in Topology II, Elsevier, Amsterdam, 2007, pp. 637-645; V.V. Fedorchuk, Weakly infinite-dimensional spaces, Russian Math. Surveys 42 (2) (2007) 1-52], coincide with dimension dimw2=dim, where dim is the transfinite dimension invented by Borst [P. Borst, Classification of weakly infinite-dimensional spaces. I. A transfinite extension of the covering dimension, Fund. Math. 130 (1) (1988) 1-25]. Some topological games which are related to countable-dimensional spaces, to C-spaces, and some other subclasses of weakly infinite-dimensional spaces are discussed.  相似文献   

12.
Let (A) be the characterization of dimension as follows: Ind X?n if and only if X has a σ-closure-preserving base W such that Ind B(W)?n?1 for every W?W. The validity of (A) is proved for spaces X such that(i) X is a paracompact σ-metric space with a scale {Xi} such that each Xi has a uniformly approaching anti-cover, or(ii) X is a subspace of the product ΠXi of countably many L-spaces Xi, the notion of which is due to K. Nagami.(i) and (ii) are the partial answers to Nagata's problem wheter (A) holds or not for every M1-space X.  相似文献   

13.
We characterize two classes of metric spaces as images under a closed, finite-to-one mapping of a zero-dimensional metric space. In the case of locally finite-dimensional spaces the mapping must be of strong local order, and for strongly countable-dimensional spaces the mapping must have weak local order. The results are analogues to characterizations by K. Morita (of finite-dimensional spaces) and J. Nagata (of countable-dimensional spaces).  相似文献   

14.
We define a pair (F,U) to be a closed set F and an open set U such that F ? U. A sequence of pair collections is used to characterize stratifiable spaces instead of a sequence of neighbornets. We introduce a new class of spaces, called regularly stratifiable spaces, which is defined in terms of pair collections. Every stratifiable μ -space is regularly stratifiable, and every regularly stratifiable space has a σ -almost locally finite base, thus is hereditary M1. J. Nagata's problem for the dimension of M1 -spaces is answered positively in the class of regularly stratifiable spaces.  相似文献   

15.
We shall give the characterizations of metrizable spaces that have both large transfinite dimension Ind and strong small transfinite dimension sind in terms of ranks and developments. A characterization of such separable metrizable spaces by means of embeddings into the Hilbert cube is also obtained.  相似文献   

16.
R. Pol has shown that for every countable ordinal number α there exists a universal space for separable metrizable spaces X with trindX?α. W. Olszewski has shown that for every countable limit ordinal number λ there is no universal space for separable metrizable space with trIndX?λ. T. Radul and M. Zarichnyi have proved that for every countable limit ordinal number there is no universal space for separable metrizable spaces with dimWX?α where dimW is a transfinite extension of covering dimension introduced by P. Borst. We prove the same result for another transfinite extension dimC of the covering dimension.As an application, we show that there is no absorbing sets (in the sense of Bestvina and Mogilski) for the classes of spaces X with dimCX?α belonging to some absolute Borel class.  相似文献   

17.
18.
In this note we prove that every Eberlein compact linearly ordered space is metrizable. (By an Eberlein compact space we mean a topological space which can be embedded as a compact subset of a Banach space with the weak topology.)  相似文献   

19.
A metric space (X,d) has the Haver property if for each sequence ?1,?2,… of positive numbers there exist disjoint open collections V1,V2,… of open subsets of X, with diameters of members of Vi less than ?i and covering X, and the Menger property is a classical covering counterpart to σ-compactness. We show that, under Martin's Axiom MA, the metric square (X,d)×(X,d) of a separable metric space with the Haver property can fail this property, even if X2 is a Menger space, and that there is a separable normed linear Menger space M such that (M,d) has the Haver property for every translation invariant metric d generating the topology of M, but not for every metric generating the topology. These results answer some questions by L. Babinkostova [L. Babinkostova, When does the Haver property imply selective screenability? Topology Appl. 154 (2007) 1971-1979; L. Babinkostova, Selective screenability in topological groups, Topology Appl. 156 (1) (2008) 2-9].  相似文献   

20.
It is shown that the product of two A-weakly infinite-dimensional spaces may fail to have this property and that under CH there is no universal space in the class of all metrizable separable A-weakly infinite-dimensional spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号