首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The notions of pro-fibration and approximate pro-fibration for morphisms in the pro-category pro-Top of topological spaces were introduced by S. Mardeši? and T.B. Rushing. In this paper we introduce the notion of strong pro-fibration, which is a pro-fibration with some additional property, and the notion of ANR object in pro-Top, which is approximately an ANR-system, and we consider the full subcategory ANR of pro-Top whose objects are ANR objects. We prove that the category ANR satisfies most of the axioms for fibration category in the sense of H.J. Baues if fibrations are strong pro-fibrations and weak equivalences are morphisms inducing isomorphisms in the pro-homotopy category pro-H(Top) of topological spaces. We give various applications. First of all, we prove that every shape morphism is represented by a strong pro-fibration. Secondly, the fibre of a strong pro-fibration is well defined in the category ANR, and we obtain an isomorphism between the pro-homotopy groups of the base and total systems of a strong pro-fibration, and hence obtain the pro-homotopy sequence of a strong pro-fibration. Finally, we also show that there is a homotopy decomposition in the category ANR.  相似文献   

2.
3.
The category of all topological spaces and continuous maps and its full subcategory of all To-spaces admit (up to isomorphism) precisely one structure of symmetric monoidal closed category (see [2]). In this paper we shall prove the same result for any epireflective subcategory of the category of topological spaces (particularly e.g. for the categories of Hausdorff spaces, regular spaces, Tychonoff spaces).  相似文献   

4.
In a previous paper the author has associated with every inverse system of compact Hausdorff spaces X with limit X and every simplicial complex K (possibly infinite) with geometric realization P=|K| a resolution RK(X) of X×P, which consists of paracompact spaces. If X consists of compact polyhedra, then RK(X) consists of spaces having the homotopy type of polyhedra. In the present paper it is proved that this construction is functorial. One of the consequences is the existence of a functor from the strong shape category of compact Hausdorff spaces X to the shape category of spaces, which maps X to the Cartesian product X×P. Another consequence is the theorem which asserts that, for compact Hausdorff spaces X, X, such that X is strong shape dominated by X and the Cartesian product X×P is a direct product in Sh(Top), then also X×P is a direct product in the shape category Sh(Top).  相似文献   

5.
In 2003 the author has associated with every cofinite inverse system of compact Hausdorff spaces X with limit X and every simplicial complex K (possibly infinite) with geometric realization P=|K| a resolution R(X,K) of X×P, which consists of paracompact spaces. If X consists of compact polyhedra, then R(X,K) consists of spaces having the homotopy type of polyhedra. In two subsequent papers the author proved that R(X,K) is a covariant functor in each of its variables X and K. In the present paper it is proved that R(X,K) is a bifunctor. Using this result, it is proved that the Cartesian product X×Z of a compact Hausdorff space X and a topological space Z is a bifunctor SSh(Cpt)×Sh(Top)→Sh(Top) from the product category of the strong shape category of compact Hausdorff spaces SSh(Cpt) and the shape category Sh(Top) of topological spaces to the category Sh(Top). This holds in spite of the fact that X×Z need not be a direct product in Sh(Top).  相似文献   

6.
Full subcategories C ? Top of the category of topological spaces, which are algebraic over Set in the sense of Herrlich [2], have pleasant separation properties, mostly subject to additional closedness assumptions. For instance, every C-object is a T1-space, if the two-element discrete space belongs to C. Moreover, if C is closed under the formation of finite powers in Top and even varietal [2], then every C-object is Hausdorff. Hence, the T2-axiom turns out to be (nearly) superfluous in Herrlich's and Strecker's characterization of the category of compact Hausdorff spaces [1], although it is essential for the proof.If we think of C-objects X as universal algebras (with possibly infinite operations), then the subalgebras of X form the closed sets of a compact topology on X, provided that the ordinal spaces [0, β] belong to C. This generalizes a result in [3]. The subalgebra topology is used to prove criterions for the Hausdorffness of every space in C, if C is only algebraic.  相似文献   

7.
8.
9.
10.
11.
We continue the study of Selectively Separable (SS) and, a game-theoretic strengthening, strategically selectively separable spaces (SS+) (see Barman, Dow (2011) [1]). The motivation for studying SS+ is that it is a property possessed by all separable subsets of Cp(X) for each σ-compact space X. We prove that the winning strategy for countable SS+ spaces can be chosen to be Markov. We introduce the notion of being compactlike for a collection of open sets in a topological space and with the help of this notion we prove that there are two countable SS+ spaces such that the union fails to be SS+, which contrasts the known result about SS spaces. We also prove that the product of two countable SS+ spaces is again countable SS+. One of the main results in this paper is that the proper forcing axiom, PFA, implies that the product of two countable Fréchet spaces is SS, a statement that was shown in Barman, Dow (2011) [1] to consistently fail. An auxiliary result is that it is consistent with the negation of CH that all separable Fréchet spaces have π-weight at most ω1.  相似文献   

12.
In this paper, a characterization is given for compact door spaces. We, also, deal with spaces X such that a compactification K(X) of X is submaximal or door.Let X be a topological space and K(X) be a compactification of X.We prove, here, that K(X) is submaximal if and only if for each dense subset D of X, the following properties hold:
(i)
D is co-finite in K(X);
(ii)
for each xK(X)?D, {x} is closed.
If X is a noncompact space, then we show that K(X) is a door space if and only if X is a discrete space and K(X) is the one-point compactification of X.  相似文献   

13.
We investigate injectivity in a comma-category C/B using the notion of the “object of sections” S(f) of a given morphism f:XB in C. We first obtain that f:XB is injective in C/B if and only if the morphism 〈1X,f〉:XX×B is a section in C/B and the object S(f) of sections of f is injective in C. Using this approach, we study injective objects f with respect to the class of embeddings in the categories ContL/B (AlgL/B) of continuous (algebraic) lattices over B. As a result, we obtain both topological (every fiber of f has maximum and minimum elements and f is open and closed) and algebraic (f is a complete lattice homomorphism) characterizations.  相似文献   

14.
Let D be the category of pro-sets (or abelian pro-groups). It is proved that for any Grothendieck site X, there exists a reflector from the category of precosheaves on X with values in D to the full subcategory of cosheaves. In the case of precosheaves on topological spaces, it is proved that any precosheaf is smooth, i.e. is locally isomorphic to a cosheaf. Constant cosheaves are constructed, and there are established connections with shape theory.  相似文献   

15.
16.
The categorical theory of closure operators is used to introduce and study separated, complete and compact objects with respect to the Zariski closure operator naturally defined in any category X(A,Ω) obtained by a given complete category X (endowed with a proper factorization structure for morphisms) and by a given X-algebra (A,Ω) by forming the affine X-objects modelled by (A,Ω). Several basic examples are provided.  相似文献   

17.
Motivated by the observation that both pretopologies and preapproach limits can be characterized as those convergence relations which have a unit for a suitable composition, we introduce the category Algu(T;V) of reflexive and unitary lax algebras, for a symmetric monoidal closed lattice V and a Set-monad T=(T,e,m). For T=U the ultrafilter monad, we characterize exponentiable morphisms in Algu(U;V). Further, we give a sufficient condition for an object to be exponentiable in the category Alg(U;V) of reflexive and transitive lax algebras. This specializes to known and new results for pretopological, preapproach and approach spaces.  相似文献   

18.
《Quaestiones Mathematicae》2013,36(3):323-337
Abstract

It is shown that the category CS of closure spaces is a topological category. For each epireflective subcategory A of a topological category X a functor F A :XX is defined and used to extend to the general case of topological categories some results given in [4], [5] and [10] for epireflective subcategories of the category Top of topological spaces.  相似文献   

19.
In ZF, i.e., Zermelo-Fraenkel set theory without the axiom of choice, the category Top of topological spaces and continuous maps is well-behaved. In particular, Top has sums (=coproducts) and products. However, it may happen that for families (Xi)iI and (Yi)iI with the property that each Xi is homeomorphic to the corresponding Yi neither their sums iIXi and iIYi nor their products iIXi and iIYi are homeomorphic. It will be shown that the axiom of choice is not only sufficient but also necessary to rectify this defect.  相似文献   

20.
We prove that if a category has two Quillen closed model structures (W1,F1,C1) and (W2,F2,C2) that satisfy the inclusions W1W2 and F1F2, then there exists a “mixed model structure” (Wm,Fm,Cm) for which Wm=W2 and Fm=F1. This shows that there is a model structure for topological spaces (and other topological categories) for which Wm is the class of weak equivalences and Fm is the class of Hurewicz fibrations. The cofibrant spaces in this model structure are the spaces that have CW homotopy type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号