首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Completely renormalized (CR) coupled-cluster (CC) approaches, such as CR-CCSD(T), in which one corrects the standard CC singles and doubles (CCSD) energy for the effects of triply (T) and other higher-than-doubly excited clusters [K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 18 (2000)], are reformulated in terms of the left eigenstates Phimid R:L of the similarity-transformed Hamiltonian of CC theory. The resulting CR-CCSD(T)(L) or CR-CC(2,3) and other CR-CC(L) methods are derived from the new biorthogonal form of the method of moments of CC equations (MMCC) in which, in analogy to the original MMCC theory, one focuses on the noniterative corrections to standard CC energies that recover the exact, full configuration-interaction energies. One of the advantages of the biorthogonal MMCC theory, which will be further analyzed and extended to excited states in a separate paper, is a rigorous size extensivity of the basic ground-state CR-CC(L) approximations that result from it, which was slightly violated by the original CR-CCSD(T) and CR-CCSD(TQ) approaches. This includes the CR-CCSD(T)(L) or CR-CC(2,3) method discussed in this paper, in which one corrects the CCSD energy by the relatively inexpensive noniterative correction due to triples. Test calculations for bond breaking in HF, F(2), and H(2)O indicate that the noniterative CR-CCSD(T)(L) or CR-CC(2,3) approximation is very competitive with the standard CCSD(T) theory for nondegenerate closed-shell states, while being practically as accurate as the full CC approach with singles, doubles, and triples in the bond-breaking region. Calculations of the activation enthalpy for the thermal isomerizations of cyclopropane involving the trimethylene biradical as a transition state show that the noniterative CR-CCSD(T)(L) approximation is capable of providing activation enthalpies which perfectly agree with experiment.  相似文献   

2.
3.
4.
The reaction mechanisms of the electrocyclic ring closure of bis(allene) and vinylallene were studied by ab initio MO methods. The conrotatory and disrotatory pathways of the electrocyclic reactions from bis(allene) to bis(methylene)cyclobutene were determined by a CASSCF method. The transition state on the conrotatory pathway is 26.8 kcal/mol above bis(allene) and about 23 kcal/mol lower than that on the disrotatory pathway at a MRMP calculation level. The activation energy on the conrotatory pathway is lower by 23 kcal/mol than that of the electrocyclic reaction of butadiene. This lower energy barrier comes from the interactions of the "side pi orbitals" of the allene group. The interaction of the "vertical pi orbitals" of the allene group is predominant at the early stage of the reaction. The activation energy of the electrocyclic reaction of vinylallene is about 8.5 kcal/mol higher than that on the conrotatory pathway of bis(allene).  相似文献   

5.
UDFT and CASSCF calculations with the 6-31G(d) basis set were performed to investigate the heavier group 14 element (M) effect on the ground-state spin multiplicity of cyclopentane-1,3-diyls and their reactivity. The calculations find that 2-metallacyclopentane-1,3-diyls (M = Si, Ge) that possess a variety of substituents (X = H, Me, F, OR, SiH(3)) at M(2) are singlet ground-state molecules. The energies of the 1,3-diphenyl-substituted singlet 2-silacyclopentane-1,3-diyls are calculated to be ca. 5 kcal/mol lower than those of the intramolecular ring-closure products, i.e., 1,4-diphenyl-5-silabicyclo[2.1.0]pentanes, at the B3LYP/6-31G(d) level of theory. The energy barrier for the disrotatory ring closure of singlet 2,2-dimethyl-1,3-diphenyl-2-silacyclopentane-1,3-diyl (lambda(calcd) = 757 nm, f = 1.01 at RCIS/6-31G(d)) to the corresponding 5-silabicyclo[2.1.0]pentane is computed to be 11.6 kcal/mol, which is 13.1 kcal/mol lower in energy than that for the conrotatory ring-opening to a 3-silapenta-1,4-diene. The computational work predicts that singlet 1,3-diaryl-2-silacyclopentane-1,3-diyls are persistent molecules under conditions without trapping agents.  相似文献   

6.
The goal of this paper is to examine the performance of the conventional and renormalized single-reference coupled-cluster (CC) methods in calculations of the potential energy surface of the water molecule. A comparison with the results of the internally contracted multi-reference configuration interaction calculations including the quasi-degenerate Davidson correction (MRCI(Q)) and the spectroscopically accurate potential energy surface of water resulting from the use of the energy switching (ES) approach indicates that the relatively inexpensive completely renormalized (CR) CC methods with singles (S), doubles (D), and a non-iterative treatment of triples (T) or triples and quadruples (TQ), such as CR-CCSD(T), CR-CCSD(TQ), and the recently developed rigorously size extensive extension of CR-CCSD(T), termed CR-CC(2,3), provide substantial improvements in the results of conventional CCSD(T) and CCSD(TQ) calculations at larger internuclear separations. It is shown that the CR-CC(2,3) results corrected for the effect of quadruply excited clusters through the CR-CC(2,3)+Q approach can compete with the highly accurate MRCI(Q) data. The excellent agreement between the CR-CC(2,3)+Q and MRCI(Q) results suggests ways of improving the global potential energy surface of water resulting from the use of the ES approach in the regions of intermediate bond stretches and intermediate energies connecting the region of the global minimum with the asymptotic regions. Contribution to the Mark S. Gordon 65th Birthday Festschrift Issue.  相似文献   

7.
The thermal isomerization of tricyclo[4.1.0.0(2,7)]heptene has been studied using computational chemistry with structures determined at the MCSCF level and energies at the MRMP2 level. Both the allowed conrotatory and forbidden disrotatory pathways have been elucidated resulting in cycloheptatriene isomers. Four reaction channels are available for the conrotatory pathway depending on which bond breaks first in the bicyclobutane moiety leading to enantiomeric pairs of (E,Z,Z)-1,3,5-cycloheptatriene and (Z,E,Z)-1,3,5-cycloheptatriene intermediates. The activation barrier is calculated to be 31.3 kcal·mol?1 for two channels and 37.5 kcal·mol?1 for the other two. The lower activation barrier leading to the (E,Z,Z)-1,3,5-cycloheptatriene enantiomeric pair is proposed to be due to resonance within the transition state. The same behavior was observed for the disrotatory pathway with activation barriers of 42.0 kcal·mol?1 and 55.1 kcal·mol?1 for the two channels, again with one transition state resonance stabilized. The barriers for trans double bond rotation of the intermediate cycloheptatrienes are determined to be 17.1 and 17.4 kcal·mol?1, about 5 kcal·mol?1 more than that for the seven carbon diene (E,Z)-1,3-cycloheptadiene. The electrocyclic ring closure of the trans cycloheptatrienes have been modeled and barriers determined to be 11.1 and 11.9 kcal·mol?1 for the formation of bicyclo[3.2.0]hepta-2,6-diene. This structure was previously reported as the end product for thermolysis of the parent tricyclo[4.1.0.0(2,7)]heptene. The thermodynamically more stable cycloheptatriene can be formed from bicyclo[3.2.0]hepta-2,6-diene through a two step process with a calculated pseudo first-order barrier of 36.4 kcal·mol?1. The trans-cycloheptatrienes reported herein are the first characterization of a small seven-membered ring triene with a trans double bond.  相似文献   

8.
The recently developed completely renormalized (CR) coupled-cluster (CC) methods with singles, doubles, and noniterative triples or triples and quadruples [CR-CCSD(T) or CR-CCSD(TQ), respectively], which are based on the method of moments of CC equations (MMCC) [K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 18 (2000)], eliminate the failures of the standard CCSD(T) and CCSD(TQ) methods at larger internuclear separations, but they are not rigorously size extensive. Although the departure from strict size extensivity of the CR-CCSD(T) and CR-CCSD(TQ) methods is small, it is important to examine the possibility of formulating the improved CR-CC methods, which are as effective in breaking chemical bonds as the existing CR-CCSD(T) and CR-CCSD(TQ) approaches, which are as easy to use as the CR-CCSD(T) and CR-CCSD(TQ) methods, and which can be made rigorously size extensive. This may be particularly useful for the applications of CR-CC methods and other MMCC approaches in calculations of potential energy surfaces of large many-electron systems and van der Waals molecules, where the additive separability of energies in the noninteracting limit is very important. In this paper, we propose different types of CR-CC approximations, termed the locally renormalized (LR) CCSD(T) and CCSD(TQ) methods, which become rigorously size extensive if the orbitals are localized on nointeracting fragments. The LR-CCSD(T) and LR-CCSD(TQ) methods rely on the form of the energy expression in terms of the generalized moments of CC equations, derived in this work, termed the numerator-denominator-connected MMCC expansion. The size extensivity and excellent performance of the LR-CCSD(T) and LR-CCSD(TQ) methods are illustrated numerically by showing the results for the dimers of stretched HF and LiH molecules and bond breaking in HF and H2O.  相似文献   

9.
The thermal isomerization of tricyclo[4.1.0.0(2,7)]heptane and bicyclo[3.2.0]hept-6-ene was studied using ab initio methods at the multiconfiguration self-consistent field level. The lowest-energy pathway for thermolysis of both structures proceeds through the (E,Z)-1,3-cycloheptadiene intermediate. Ten transition states were located, which connect these three structures to the final product, (Z,Z)-1,3-cycloheptadiene. Three reaction channels were investigated, which included the conrotatory and disrotatory ring opening of tricyclo[4.1.0.0(2,7)]heptane and bicyclo[3.2.0]hept-6-ene and trans double bond rotation of (E,Z)-1,3-cycloheptadiene. The activation barrier for the conrotatory ring opening of tricyclo[4.1.0.0(2,7)]heptane to (E,Z)-1,3-cycloheptadiene was found to be 40 kcal mol(-1), while the disrotatory pathway to (Z,Z)-1,3-cyclohetpadiene was calculated to be 55 kcal mol(-1). The thermolysis of bicyclo[3.2.0]hept-6-ene via a conrotatory pathway to (E,Z)-1,3-cycloheptadiene had a 35 kcal mol(-1) barrier, while the disrotatory pathway to (Z,Z)-1,3-cyclohetpadiene had a barrier of 48 kcal mol(-1). The barrier for the isomerization of (E,Z)-1,3-cycloheptadiene to bicyclo[3.2.0]hept-6-ene was found to be 12 kcal mol(-1), while that directly to (Z,Z)-1,3-cycloheptadiene was 20 kcal mol(-1).  相似文献   

10.
11.
Multireference [complete active space self-consistent field (CASSCF) and multiconfigurational quasidegenerate perturbation theory (MCQDPT)] and single-reference ab initio (Moller-Plesset second order perturbation theory (MP2) and coupled clusters with singles, doubles and noniterative triples [CCSD(T)]) and density functional theory (PBE and B3LYP) electronic structure calculations of V(C(6)H(6))(+) half-sandwich in the states of different multiplicities are described and compared. Detailed analyses of the geometries and electronic structures of the all found states are given; adiabatic and diabatic dissociation energies are estimated. The lowest electronic state of V(C(6)H(6))(+) half-sandwich was found to be the quintet (5)B(2) state with a slightly deformed upside-down-boat-shaped benzene ring and d(4) configuration of V atom, followed by a triplet (3)A(2) state lying about 4 kcal/mol above. The lowest singlet state (1)A(1)(d(4)) lies much ( approximately 28 kcal/mol) higher. MCQDPT calculated adiabatic dissociation energy (53.6 kcal/mol) for the lowest (5)B(2)(d(4)) state agrees well with the current 56.4 (54.4) kcal/mol experimental estimate, giving a preference to the lower one. Compared to MCQDPT, B3LYP hybrid exchange-correlation functional provides the best results, while CCSD(T) performs usually worse. Gradient-corrected PBE calculations tend to systematically overestimate metal-benzene binding in the row quintet相似文献   

12.
The mechanism of cyclohexyne insertion into a C(O)-C(α) bond of cyclic ketones, explored experimentally by the Carreira group, has been investigated using density functional theory. B3LYP and M06-2X calculations were performed in both gas phase and THF (CPCM, UAKS radii). The reaction proceeds through a stepwise [2 + 2] cycloaddition of cyclohexyne to the enolate, followed by three disparate ring-opening possibilities of the cyclobutene alkoxide to give the product: (1) thermally allowed conrotatory electrocyclic ring-opening, (2) thermally forbidden disrotatory electrocyclic ring-opening, or (3) nonpericyclic C-C bond cleavage. Our computational results for the model alkoxide and potassium alkoxide systems show that the thermally allowed electrocyclic ring-opening pathway is favored by less than 1 kcal/mol. In more complex systems containing a potassium alkoxide (e-f), the barrier of the allowed conrotatory ring-opening is disfavored by 4-8 kcal/mol. This suggests that the thermodynamically more stable disrotatory product can be formed directly through a "forbidden" pathway. Analysis of geometrical parameters and atomic charges throughout the ring-opening pathways provides evidence for a nonpericyclic C-C bond cleavage, rather than a thermally forbidden disrotatory ring-opening. A true forbidden disrotatory ring-opening transition structure was computed for the cyclobutene alcohol; however, it was 19 kcal/mol higher in energy than the allowed conrotatory transition structure. An alternate mechanism in which the disrotatory product forms via isomerization of the conrotatory product was also explored for the alkoxide and potassium alkoxide systems.  相似文献   

13.
The mechanism of the reaction between acetylene and ozone to form a primary ozonide (POZ) in the gas phase has been studied theoretically. The concerted pathway, HCCH + O3 --> POZ, proceeds via a biradicaloid transition state TS0. The stepwise pathway is a three-step reaction, HCCH + O3 --> M1 --> M2 --> POZ, involving two biradical TSs and two biradical intermediates M1 and M2. The segment of the global potential energy surface (PES) for the concerted pathway is characterized as a R-PES, which is obtained from the restricted (R) density functional theory and Hartree-Fock-based methods. The RDFT and RHF solutions of TS0 and O3 are unstable toward spin-symmetry breaking. The wave function instability for TS0 and O3 results in a discontinuity between the R-PES and the region of the global PES encompassing the biradical TSs and the intermediates of the stepwise pathway, which are characterized with unrestricted (U) methods. The global PES is characterized separately as an U(R)-PES using a combination of the R and U methods. Several different values of barriers for the concerted pathway and the energy of concert (Ec) can be estimated due to complications arising from the discontinuity between the R- and the U(R)-PES and the existence of two different RDFT and UDFT O3 equilibrium geometries. RCCSD(T)//RDFT predicts a barrier of 8.2 kcal/mol. U(R)CCSD(T)/U(R)DFT predicts a barrier of 13.8 kcal/mol for the concerted and 15.3 kcal/mol for the stepwise pathway. Comparison between the R-PES barrier to the concerted pathway and the U(R)-PES barrier to the stepwise pathway suggests the former to be the only significant mechanism. Consideration of the energy difference between TS1, the TS for the first step of the stepwise mechanism, and TS0 within the global PES leads to a significantly smaller Ec. Geometry optimization with CASSCF and energy point calculations with MRMP2 are employed to characterize TS0 and TS1. MRMP2//CASSCF predicts the energy level of TS1 to be higher than that of TS0 by 2 kcal/mol. Analysis of experimental and computational data based on the low estimate of Ec shows that the possibility of the stepwise pathway being a secondary channel at elevated temperatures cannot be ruled out.  相似文献   

14.
The CCSD, CCSD(T), and CR-CC(2,3) coupled cluster methods, combined with five triple-zeta basis sets, namely, MG3S, aug-cc-pVTZ, aug-cc-pV(T+d)Z, aug-cc-pCVTZ, and aug-cc-pCV(T+d)Z, are tested against the DBH24 database of diverse reaction barrier heights. The calculations confirm that the inclusion of connected triple excitations is essential to achieving high accuracy for thermochemical kinetics. They show that various noniterative ways of incorporating connected triple excitations in coupled cluster theory, including the CCSD(T) approach, the full CR-CC(2,3) method, and approximate variants of CR-CC(2,3) similar to the triples corrections of the CCSD(2) approaches, are all about equally accurate for describing the effects of connected triply excited clusters in studies of activation barriers. The effect of freezing core electrons on the results of the CCSD, CCSD(T), and CR-CC(2,3) calculations for barrier heights is also examined. It is demonstrated that to include core correlation most reliably, a basis set including functions that correlate the core and that can treat core-valence correlation is required. On the other hand, the frozen-core approximation using valence-optimized basis sets that lead to relatively small computational costs of CCSD(T) and CR-CC(2,3) calculations can achieve almost as high accuracy as the analogous fully correlated calculations.  相似文献   

15.
CASSCF, CASPT2, CCSD(T), and (U)B3LYP electronic structure calculations have been performed in order to investigate the thermal fragmentation of P-phenylphosphirane (1) to phenylphosphinidene (PhP) and ethylene. The calculations show that generation of triplet PhP via a stepwise pathway is 21 kcal mol(-1) less endothermic and has a 12 kcal mol(-1) lower barrier height than concerted fragmentation of 1 to give singlet PhP. The formation of singlet PhP via a concerted pathway is predicted to be stereospecific, whereas formation of triplet PhP is predicted to occur with complete loss of stereochemistry. However, calculations on fragmentation of anti-cis-2,3-dimethyl-P-mesitylphosphirane (cis-1Me) to triplet mesitylphosphinidene (MesP) indicate that this reaction should be more stereospecific, in agreement with the experimental results of Li and Gaspar. Nevertheless, with a predicted free energy of activation of 42 kcal mol(-1), the formation of MesP from cis-1Me is not likely to have occurred in an uncatalyzed reaction at the temperatures at which this phosphirane has been pyrolyzed.  相似文献   

16.
In this article we report our study of two possible mechanisms of photooxidation of hydroxyaromatic compounds, involving the intermediacy of zwitterionic peroxa intermediates or 1,4-endoperoxides. To study the pathway of the first of them, as yet unexplored by theoretical methods, a simpler system composed of 1,3-butadiene-1-ol and singlet ((1)Delta(g)) dioxygen was considered first, for which calculations were carried out at the CASSCF/MCQDPT2 ab initio level, mostly with the 6-31G* basis set. The cumulative activation barrier to this reaction was found to be 20 kcal/mol and corresponded to a proton transfer (from the hydroxy oxygen atom to the attached oxygen molecule) in the cyclic zwitterionic peroxacyclopenta-3-ene-2-ol intermediate. This intermediate and the proton-transfer transition state were found to have a closed-shell character, which enabled us to estimate the corresponding activation barrier for the phenol-dioxygen system by carrying out optimization at the RHF level and single-point calculations at the MP2, CASSCF, and MCQDPT2 levels of theory. The energy barrier to the reaction was estimated to at least about 40 kcal/mol, rendering this mechanism for the phenol-oxygen system unlikely for nonpolar solvents. Similarly, calculations of the barrier to proton transfer from the 1,4-endoperoxide of phenol to its hydroperoxide were found to exceed 60 kcal/mol, eliminating such a mechanism too, which leaves only the earlier postulated mechanisms involving an initial charge or hydrogen-atom transfer to dioxygen as probable.  相似文献   

17.
The [2 + 2] cycloadditions of cyclopentyne and benzyne to ethylene are explored at the B3LYP and CASSCF levels, supplemented by CCSD(T) and CAS-MP2 calculations at the stationary points. The biradical path in the benzyne system is computed to be about 4.1 kcal/mol lower than the concerted path, consistent with the experimentally observed loss of original stereochemistry in this cycloaddition. However, computations fail to confirm the 99% stereoretention in the corresponding reaction of cyclopentyne. The concerted and biradical paths in the latter reaction are found to involve nearly isoenergetic barriers, thus predicting only about 75% stereoretention. More sophisticated theoretical methods seem to be needed to resolve the issue in the cyclopentyne system.  相似文献   

18.
The conformational space of C(10)H(8) 1,2-didehydro[10]annulenes, along with their unimolecular conversion to isonaphthalenes (cyclic allenes), has been studied computationally using DFT (B3LYP), single-reference [CCSD(T)], and multireference (MCQDPT2) post-HF methods. The introduction of the linear alkynyl moiety releases enough angle strain to make a nearly planar "heart" aromatic form the preferred conformer by more than 6 kcal/mol [CCSD(T)] over a localized C(2) "twist" structure, as opposed to the closely related C(10)H(10) [10]annulene system. Computations also show that electrocyclic ring-opening of isonaphthalenes to the heart C(10)H(8) annulene takes place through a low barrier of 15 kcal/mol, and this should be considered the working mechanism for the reported isomerizations during dehydro Diels-Alder reactions of phenylacetylenes.  相似文献   

19.
The recently developed [P. Piecuch and M. Wloch, J. Chem. Phys. 123, 224105 (2005)] size-extensive left eigenstate completely renormalized (CR) coupled-cluster (CC) singles (S), doubles (D), and noniterative triples (T) approach, termed CR-CC(2,3) and abbreviated in this paper as CCL, is compared with the full configuration interaction (FCI) method for all possible types of single bond-breaking reactions between C, H, Si, and Cl (except H2) and the H2Si[Double Bond]SiH2 double bond-breaking reaction. The CCL method is in excellent agreement with FCI in the entire region R=1-3Re for all of the studied single bond-breaking reactions, where R and Re are the bond distance and the equilibrium bond length, respectively. The CCL method recovers the FCI results to within approximately 1 mhartree in the region R=1-3Re of the H-SiH3, H-Cl, H3Si-SiH3, Cl-CH3, H-CH3, and H3C-SiH3 bonds. The maximum errors are -2.1, 1.6, and 1.6 mhartree in the R=1-3Re region of the H3C-CH3, Cl-Cl, and H3Si-Cl bonds, respectively, while the discrepancy for the H2Si[Double Bond]SiH2 double bond-breaking reaction is 6.6 (8.5) mhartree at R=2(3)Re. CCL also predicts more accurate relative energies than the conventional CCSD and CCSD(T) approaches, and the predecessor of CR-CC(2,3) termed CR-CCSD(T).  相似文献   

20.
The allowed conrotatory cyclobutene ring-opening has a distinctly nonplanar carbon skeleton. Classic experiments by Brauman and Archie, and by Freedman et al., placed the allowed/forbidden gap at greater than 15 kcal/mol. Wolfgang Roth proposed that a system forced to planarity might have a smaller preference for the conrotatory mode than unconstrained systems. Such systems have now been studied theoretically and experimentally, and results that confirm Roth's postulate are presented here. The experiments were performed in Bochum, and the calculations were carried out in Osaka and Los Angeles. As the cyclobutene ring-opening transition structure approaches planarity, the energy gap between allowed conrotatory and the forbidden disrotatory pathways decreases. For the ring-opening of a cyclobutene fused to norbornene, the energy gap between the forbidden and the allowed transition state is only 4.1 kcal/mol by CASSCF and 8.0 kcal/mol by CAS-MP2 as compared to 13.4 and 19.2 kcal/mol, respectively, for the parent cyclobutene. Experimental studies of 3,4-dimethylcyclobutenes fused to various ring systems are reported, and a trend is found toward a reduced allowed/forbidden gap as the planarity of the cyclobutene is enforced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号