首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indirect methods of investigation of composition and defect structures of lithium niobate (LiNbO3) single crystals with different compositions are discussed. The analysis of two methods for the determination of the Li/Nb ratio in the samples is carried out, viz., the fundamental UV absorption edge and IR vibrational spectra of the OH group defects. Intrinsic defect concentrations in lithium niobate crystals (lithium vacancies, $ V_{Li^ - } $ V_{Li^ - } and defects, $ Nb_{Li^{4 + } } $ Nb_{Li^{4 + } } ) as a function of the Li/Nb ratio in the samples are given. The results obtained can serve as an effective way of express non-destructive composition analysis in a mass production of parallel-plane plates.  相似文献   

2.
The properties of perovskite type ABO3 lithium-ion conducting oxides based on lanthanum lithium titanate (La,Li)TiO3, lanthanum lithium niobate and tantalate, and Li5La3M2O12 (M = Nb, Ta) garnets were considered. Approaches to modification of the properties of these oxides, as well as the charge-compensation mechanisms associated with nonisovalent doping were discussed. Special consideration was given to phase formation and crystal structure in relation to the composition and preparation conditions of the oxides.  相似文献   

3.
The kinetics of electron tunneling between electron and hole sites, stimulated by mobility of lithium cations in lithium gadolinium orthoborate (Li6Gd(BO3)3) crystals has been studied. A mathematical model has been proposed to describe the kinetics in the wide time interval of 10−8–100 s after pulsed irradiation. The calculation results have been compared with experimental data on the decay kinetics of transient optical absorption (TOA) in Li6Gd(BO3)3 crystals in the visible and UV spectral regions. The nature of radiation defects responsible for TOA is discussed, as well as the dependence of the TOA kinetics on temperature, excitation power, and other experimental conditions.  相似文献   

4.
Steady-state polarization measurements of lithium titanium oxide (LTO; Li[Li1/3Ti5/3]O4) were carried out using the 0-V lithium-ion cells consisting of two identical LTO-electrodes with a parallel-plate symmetrical electrode configuration. The sinusoidal voltage with the peak amplitude of 1.0 V was imposed at 0.1 Hz upon the 0-V cells and the current response was measured as a function of time. The steady-state polarization, obtained by plotting the current versus applied voltage, was linear in current up to approximately 60 mA cm?2 or 4 A g?1 based on the LTO weight and suggested the resistance polarization only for the lithium insertion electrode of the LTO. The method was also applied to lithium aluminum manganese oxide (LAMO; Li[Li0.1Al0.1Mn1.8]O4) and the resistance polarization of the LAMO-electrode was determined for currents up to approximately 25 mA cm?2 or 2 A g?1 based on the LAMO weight. The validity of the results was examined for the polarization measurements of the 2.5-V lithium-ion battery consisting of LTO and LAMO, and the significance of the polarization measurements of lithium insertion electrodes for high-power applications was discussed.  相似文献   

5.
The population decay of light-induced small polarons in iron-doped lithium niobate is simulated by a Monte-Carlo method on the basis of Holstein's theory. The model considers random walks of both bound polarons (NbLi4+) and free polarons (NbNb4+) ending to deep traps (FeLi3+). The thermokinetic interplay between polaron species is introduced by trapping and de-trapping rates at niobium antisites (NbLi). The decay of the NbLi4+ population proceeds by three possible channels: direct trapping at FeLi3+ sites, hopping on niobium antisites and hopping on Nb regular sites after conversion to the free state. Up to three regimes, each one reflecting the predominance of one of these processes, appear with different activation energies in the Arrhenius plots of the decay time. The influence of FeLi and NbLi concentrations on the transition temperatures is evidenced. For both polaron species, the length of the final hop (trapping length) is found much larger than the usual hopping length and decreases at rising temperature. This trap size effect is a natural consequence of Holstein's theory and may explain some unclear features of polaron-related light-induced phenomena, such as the temperature-dependent stretching exponent of light-induced absorption decays and the anomalous increase of the photoconductivity at high doping levels.  相似文献   

6.
We discuss here a unique flexible non‐carbonaceous layered host, namely, metal titanium niobates (M‐Ti‐niobate, M: Al3+, Pb2+, Sb3+, Ba2+, Mg2+), which can synergistically store both lithium ions and sodium ions via a simultaneous intercalation and alloying mechanisms. M‐Ti‐niobate is formed by ion exchange of the K+ ions, which are specifically located inside galleries between the layers formed by edge and corner sharing TiO6 and NbO6 octahedral units in the sol‐gel synthesized potassium titanium niobate (KTiNbO5). Drastic volume changes (approximately 300–400 %) typically associated with an alloying mechanism of storage are completely tackled chemically by the unique chemical composition and structure of the M‐Ti‐niobates. The free space between the adjustable Ti/Nb octahedral layers easily accommodates the volume changes. Due to the presence of an optimum amount of multivalent alloying metal ions (50–75 % of total K+) in the M‐Ti‐niobate, an efficient alloying reaction takes place directly with ions and completely eliminates any form of mechanical degradation of the electroactive particles. The M‐Ti‐niobate can be cycled over a wide voltage range (as low as 0.01 V) and displays remarkably stable Li+ and Na+ ion cyclability (>2 Li+/Na+ per formula unit) for widely varying current densities over few hundreds to thousands of successive cycles. The simultaneous intercalation and alloying storage mechanisms is also studied within the density functional theory (DFT) framework. DFT expectedly shows a very small variation in the volume of Al‐titanium niobate following lithium alloying. Moreover, the theoretical investigations also conclusively support the occurrence of the alloying process of Li ions with the Al ions along with the intercalation process during discharge. The M‐Ti‐niobates studied here demonstrate a paradigm shift in chemical design of electrodes and will pave the way for the development of a multitude of improved electrodes for different battery chemistries.  相似文献   

7.
The synthesis, spectroscopic and structural characterisation of a series of [M(hfip)6] (M = Nb, Ta; hfip = O–C(H)(CF3)2) salts that are the typical starting materials to introduce these weakly coordinating anions by metathesis reactions into a given system is described. The salts Li[Nb(hfip)6] and Li[Ta(hfip)6] formed in 65 to 77 % yield from freshly sublimed MCl5 and Li[hfip]. By contrast, several attempts to synthesize Li[Sb(hfip)6] on the similar route (replace NbCl5 by SbCl5) failed to yield a pure product. Upon metathesis of the Li‐niobate with AgF in CH2Cl2, the pure Ag[Nb(hfip)6] formed. Mixing Li[Nb(hfip)6] with an equimolar amount of Cl–CPh3 in CH2Cl2 gave the yellow [CPh3][Nb(hfip)6]. Several of the compounds were characterized by X‐ray analysis. Thus, the crystal structures of the Li+‐ and Ag+‐solvates 1, 2‐C6H4F2{LiNb(hfip)6}2, [Li(H2O)][Ta(hfip)6], and [Ag(C6H5F)][Nb(hfip)6] as well as that of [CPh3][Nb(hfip)6] were solved and are described in this work.  相似文献   

8.
Li2B6 is formed from the elements as transparent red microcrystalline compound (Li : B = 1 : 3; Mo crucible in closed Nb ampoule; 1723 K; 4 h). Single crystals are grown from a lithium silicide melt with large Li excess at 1923 K. Li2B6 is a semiconductor with electron as well as Li+ ionic conductivity which dominates above 600 K. Microcrystalline samples react with H2O liberating gases and forming a brownish amorphous product, but larger crystals are not very sensitive. – Li2B6 crystallizes tetragonally in a new tP16 structure type which is a variant of the CaB6 structure (a = 5.975 Å, c = 4.189 Å; Z = 2; space group P4/mbm). The [B62–] net of the polymeric octahedro-anion is slightly distorted to give space for the insertion of a (32434) net of the Li+ cations in the cavities (d(B–B)endo = 1.766 Å; d(B–B)exo = 1.720 Å; d(Li–B) = 2.363 Å; d(Li–Li) = 3.094 Å). The incomplete occupancy of the Li position (80%) and the electron density at a further position (20%) indicate the mobility of the Li+ cations.  相似文献   

9.
The isotope composition of lithium charge carriers is experimentally found to severely affect transport in solid electrolytes -Li3BO3, Li3N, Li3AlN2, Li5SiN3, Li6MoN4, Li6WN4, and LiCl. The lithium cation conduction of these decreases with increasing content of 6Li or 7Li and reaches a minimum at [6Li] = [7Li]. The activation energy for conduction increases, reaches a maximum in the same compositions, and then diminishes. Rates of spin–lattice relaxation of 7Li nuclei in electrolytes are studied by an NMR method at 15–35 MHz. The calculated activation energy for short-range motion (to one interatom distance) of lithium charge carriers in crystal lattices of electrolytes is lower than that for ionic conduction by 2–3 times, which is attributed to two types of correlation (electrostatic, isotopic) of charge carriers.  相似文献   

10.
An electrochemical cell was developed for the in situ transmission X–ray Absorption Fine Structure measurements of the charge/discharge process of the cathode materials of lithium secondary batteries, from which Li can be electrochemically deintercalated or intercalated. The dynamical structural behavior of Mn in Li(Mn1.93Li0.07)O4, and Li(Mn1.85Li0.15)O4 as a function of both excess Li content and the Li deintercalation was revealed using the in situ cell. The analysis disclosed the coexistence of two MnO6–coordination polyhedra with different Mn–O distances for the Mn3+ and Mn4+ ions at the 16d site of the spinel structure. Because the charge–discharge process accompanies the oxidation–reduction of the Mn ions, this size difference causes an unfavorable lattice distortion for the electrode materials which can cause a loss of cell capacity after cyclic use of the cell. A partial substitution of Li for Mn will diminish this effect and will be favorable for the battery material.  相似文献   

11.
Controlling lithium (Li) electrocrystallization with preferred orientation is a promising strategy to realize highly reversible Li metal batteries (LMBs) but lack of facile regulation methods. Herein, we report a high-flux solid electrolyte interphase (SEI) strategy to direct (110) preferred Li deposition even on (200)-orientated Li substrate. Bravais rule and Curie-Wulff principle are expanded in Li electrocrystallization process to decouple the relationship between SEI engineering and preferred crystal orientation. Multi-spectroscopic techniques combined with dynamics analysis reveal that the high-flux CF3Si(CH3)3 (F3) induced SEI (F3-SEI) with high LiF and −Si(CH3)3 contents can ingeniously accelerate Li+ transport dynamics and ensure the sufficient Li+ concentration below SEI to direct Li (110) orientation. The induced Li (110) can in turn further promote the surface migration of Li atoms to avoid tip aggregation, resulting in a planar, dendrite-free morphology of Li. As a result, our F3-SEI enables ultra-long stability of Li||Li symmetrical cells for more than 336 days. Furthermore, F3-SEI modified Li can significantly enhance the cycle life of Li||LiFePO4 and Li||NCM811 coin and pouch full cells in practical conditions. Our crystallographic strategy for Li dendrite suppression paves a path to achieve reliable LMBs and may provide guidance for the preferred orientation of other metal crystals.  相似文献   

12.
The isotopic composition of lithium in seawater has been determined by thermal ionization mass spectrometry (TIMS) based on the use of lithium hydroxide as the ion source. Isotopic measurements in a reference material supplied by IAEA (L-SVEC Li2CO3) were made to check the reproducibility of the method and 6Li indicates mobilization of light isotope of lithium form the sediment.  相似文献   

13.
Rechargeable lithium−oxygen (Li−O2) batteries with high theoretical energy density are considered as promising candidates for portable electronic devices and electric vehicles, whereas their commercial application is hindered due to poor cyclic stability caused by the sluggish kinetics and cathode passivation. Herein, the intrinsic stress originated from the growth and decomposition of the discharge product (lithium peroxide, Li2O2) is employed as a microscopic pressure resource to induce the built-in electric field, further improving the reaction kinetics and interfacial Lithium ion (Li+) transport during cycling. Piezopotential caused by the intrinsic stress-strain of solid Li2O2 is capable of providing the driving force for the separation and transport of carriers, enhancing the Li+ transfer, and thus improving the redox reaction kinetics of Li−O2 batteries. Combined with a variety of in situ characterizations, the catalytic mechanism of barium titanate (BTO), a typical piezoelectric material, was systematically investigated, and the effect of stress-strain transformation on the electrochemical reaction kinetics and Li+ interface transport for the Li−O2 batteries is clearly established. The findings provide deep insight into the surface coupling strategy between intrinsic stress and electric fields to regulate the electrochemical reaction kinetics behavior and enhance the interfacial Li+ transport for battery system.  相似文献   

14.
Layered, lithium-rich Li[Li0.2Co0.3Mn0.5]O2 cathode material is synthesized by reactions under autogenic pressure at elevated temperature (RAPET) method, and its electrochemical behavior is studied in 2?M Li2SO4 aqueous solution and compared with that in a non-aqueous electrolyte. In cyclic voltammetry (CV), Li[Li0.2Co0.3Mn0.5]O2 electrode exhibits a pair of reversible redox peaks corresponding to lithium ion intercalation and deintercalation at the safe potential window without causing the electrolysis of water. CV experiments at various scan rates revealed a linear relationship between the peak current and the square root of scan rate for all peak pairs, indicating that the lithium ion intercalation–deintercalation processes are diffusion controlled. The corresponding diffusion coefficients are found to be in the order of 10?8?cm2?s?1. A typical cell employing Li[Li0.2Co0.3Mn0.5]O2 as cathode and LiTi2(PO4)3 as anode in 2?M Li2SO4 solution delivers a discharge capacity of 90?mA?h g?1. Electrochemical impedance spectral data measured at various discharge potentials are analyzed to determine the kinetic parameters which characterize intercalation–deintercalation of lithium ions in Li[Li0.2Co0.3Mn0.5]O2 from 2?M Li2SO4 aqueous electrolyte.  相似文献   

15.
The sluggish sulfur redox kinetics and shuttle effect of lithium polysulfides (LiPSs) are recognized as the main obstacles to the practical applications of the lithium-sulfur (Li−S) batteries. Accelerated conversion by catalysis can mitigate these issues, leading to enhanced Li−S performance. However, a catalyst with single active site cannot simultaneously accelerate multiple LiPSs conversion. Herein, we developed a novel dual-defect (missing linker and missing cluster defects) metal–organic framework (MOF) as a new type of catalyst to achieve synergistic catalysis for the multi-step conversion reaction of LiPSs. Electrochemical tests and first-principle density functional theory (DFT) calculations revealed that different defects can realize targeted acceleration of stepwise reaction kinetics for LiPSs. Specifically, the missing linker defects can selectively accelerate the conversion of S8→Li2S4, while the missing cluster defects can catalyze the reaction of Li2S4→Li2S, so as to effectively inhibit the shuttle effect. Hence, the Li−S battery with an electrolyte to sulfur (E/S) ratio of 8.9 mL g−1 delivers a capacity of 1087 mAh g−1 at 0.2 C after 100 cycles. Even at high sulfur loading of 12.9 mg cm−2 and E/S=3.9 mL g−1, an areal capacity of 10.4 mAh cm−2 for 45 cycles can still be obtained.  相似文献   

16.
Contributions to the Chemistry of Organo Transition Metal Compounds. XLIX. Reactions of Cerium(IV) Acetylacetonate with Organolithium and Organomagnesium Compounds Reacting Ce(acac)4 with lithium organyls RLi (R = CH3 1-Nor1), ((CH3)2NCH2CH2CH2) in the molar ratio 1:1 the cerium compound is reduced with formation of Li[Ce(acac)4]. Using a molar ratio of Ce:Li = 1:4 organocerium complexes of the composition R3Ce · 3 Li(acac) or Li3[R3Ce(acac)3] are formed. From reactions with excess CH3Li (Ce: Li = 1:7) Li3[Ce(CH3)6] · 3 Li(acac) could be isolated. All cerium complexes are characterized by elementary analysis, hydrolysis products, i.r. spectra, and molecular weight determination.  相似文献   

17.
Solid‐oxide Li+ electrolytes of a rechargeable cell are generally sensitive to moisture in the air as H+ exchanges for the mobile Li+ of the electrolyte and forms insulating surface phases at the electrolyte interfaces and in the grain boundaries of a polycrystalline membrane. These surface phases dominate the total interfacial resistance of a conventional rechargeable cell with a solid–electrolyte separator. We report a new perovskite Li+ solid electrolyte, Li0.38Sr0.44Ta0.7Hf0.3O2.95F0.05, with a lithium‐ion conductivity of σLi=4.8×10?4 S cm?1 at 25 °C that does not react with water having 3≤pH≤14. The solid electrolyte with a thin Li+‐conducting polymer on its surface to prevent reduction of Ta5+ is wet by metallic lithium and provides low‐impedance dendrite‐free plating/stripping of a lithium anode. It is also stable upon contact with a composite polymer cathode. With this solid electrolyte, we demonstrate excellent cycling performance of an all‐solid‐state Li/LiFePO4 cell, a Li‐S cell with a polymer‐gel cathode, and a supercapacitor.  相似文献   

18.
We describe in this paper the lithium insertion/extraction behavior of a new NASICON type Li2Co2(MoO4)3 at a low potential and explored the possibility of considering this new oxyanion material as anode for lithium-ion batteries for the first time. Li2Co2(MoO4)3 was synthesized by a soft-combustion glycine-nitrate low temperature protocol. Test cells were assembled using composite Li2Co2(MoO4)3 as the negative electrode material and a thin lithium foil as the positive electrode material separated by a microporous polypropylene (Celgard® membrane) soaked in aprotic organic electrolyte (1 M LiPF6 in EC/DMC). Electrochemical discharge down to 0.001 V from OCV (~3.5 V) revealed that about 35 Li+ could possibly be inserted into Li2Co2(MoO4)3 during the first discharge (reduction) corresponding to a specific capacity amounting to 1,500 mAh g?1. This is roughly fourfold higher compared to that of frequently used graphite electrodes. However, about 24 Li+ could be extracted during the first charge. It is interesting to note that the same amount of Li+ could be inserted during the second Li+ insertion process (second cycle discharge) giving rise to a second discharge capacity of 1,070 mAh g?1. It was also observed that a major portion of lithium intake occurs below 1.0 V vs Li/Li+, which is typical of anodes being used in lithium-ion batteries.  相似文献   

19.
The design of stable organic electrides with high nonlinear optical (NLO) properties is a challenge in organic and materials chemistry. Here we theoretically design of a novel organic molecular electride model, Li+(C20H15Li5)e, by modifying the lithiation and Li-doping based on dodecahedrane (C20H20). Its electride characteristic is verified by the quantum theory of atoms in molecules and electron localization function analyses. For the first time, the strategy of steric protection is applied to improve the stability of the organic electride Li+@(C20H15Li5)e, in which the closed C20 cage serves not only as the ligand with a negative inner electric field to stabilize the Li cation but also as a barrier to prevent the Li cation from escaping. Meanwhile, the released excess electron is firmly captured in the cavity of Li5. Moreover, Li+(C20H15Li5)e displays a remarkably large first hyperpolarizability of 1.4 × 104 au with potential application in organic second-order NLO materials.  相似文献   

20.
Lithium manganese oxide crystals with composition (Li0.91Mn0.09)Mn2O4 were synthesized by a flux method. The crystals have a structure closely related to that of the cubic spinel LiMn2O4, but 9% of the lithium ions in the tetrahedral 4a site are substituted by Mn2+ ions. This substitution lowers the average Mn oxidation state below 3.5+, resulting in a Jahn–Teller distortion of the MnO6 octahedron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号