首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a sequence of identically distributed negatively associated random variables {Xn; n ≥ 1} with partial sums Sn = ∑i=1^n Xi, n ≥ 1, refinements are presented of the classical Baum-Katz and Lai complete convergence theorems. More specifically, necessary and sufficient moment conditions are provided for complete moment convergence of the form ∑n≥n0 n^r-2-1/pq anE(max1≤k≤n|Sk|^1/q-∈bn^1/qp)^+〈∞to hold where r 〉 1, q 〉 0 and either n0 = 1,0 〈 p 〈 2, an = 1,bn = n or n0 = 3,p = 2, an = 1 (log n) ^1/2q, bn=n log n. These results extend results of Chow and of Li and Spataru from the indepen- dent and identically distributed case to the identically distributed negatively associated setting. The complete moment convergence is also shown to be equivalent to a form of complete integral convergence.  相似文献   

2.
The authors present an algorithm which is a modification of the Nguyen-Stehle greedy reduction algorithm due to Nguyen and Stehle in 2009. This algorithm can be used to compute the Minkowski reduced lattice bases for arbitrary rank lattices with quadratic bit complexity on the size of the input vectors. The total bit complexity of the algorithm is $O(n^2 \cdot (4n!)^n \cdot (\tfrac{{n!}} {{2^n }})^{\tfrac{n} {2}} \cdot (\tfrac{4} {3})^{\tfrac{{n(n - 1)}} {4}} \cdot (\tfrac{3} {2})^{\tfrac{{n^2 (n - 1)}} {2}} \cdot \log ^2 A) $O(n^2 \cdot (4n!)^n \cdot (\tfrac{{n!}} {{2^n }})^{\tfrac{n} {2}} \cdot (\tfrac{4} {3})^{\tfrac{{n(n - 1)}} {4}} \cdot (\tfrac{3} {2})^{\tfrac{{n^2 (n - 1)}} {2}} \cdot \log ^2 A) , where n is the rank of the lattice and A is maximal norm of the input base vectors. This is an O(log2 A) algorithm which can be used to compute Minkowski reduced bases for the fixed rank lattices. A time complexity n! · 3 n (log A) O(1) algorithm which can be used to compute the successive minima with the help of the dual Hermite-Korkin-Zolotarev base was given by Blomer in 2000 and improved to the time complexity n! · (log A) O(1) by Micciancio in 2008. The algorithm in this paper is more suitable for computing the Minkowski reduced bases of low rank lattices with very large base vector sizes.  相似文献   

3.
Let X,X(1),X(2),... be independent identically distributed random variables with mean zero and a finite variance. Put S(n) = X(1) + ... + X(n), n = 1, 2,..., and define the Markov stopping time η y = inf {n ≥ 1: S(n) ≥ y} of the first crossing a level y ≥ 0 by the random walk S(n), n = 1, 2,.... In the case $ \mathbb{E} $ \mathbb{E} |X|3 < ∞, the following relation was obtained in [8]: $ \mathbb{P}\left( {\eta _0 = n} \right) = \frac{1} {{n\sqrt n }}\left( {R + \nu _n + o\left( 1 \right)} \right) $ \mathbb{P}\left( {\eta _0 = n} \right) = \frac{1} {{n\sqrt n }}\left( {R + \nu _n + o\left( 1 \right)} \right) as n → ∞, where the constant R and the bounded sequence ν n were calculated in an explicit form. Moreover, there were obtained necessary and sufficient conditions for the limit existence $ H\left( y \right): = \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _y = n} \right) $ H\left( y \right): = \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _y = n} \right) for every fixed y ≥ 0, and there was found a representation for H(y). The present paper was motivated by the following reason. In [8], the authors unfortunately did not cite papers [1, 5] where the above-mentioned relations were obtained under weaker restrictions. Namely, it was proved in [5] the existence of the limit $ \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _y = n} \right) $ \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _y = n} \right) for every fixed y ≥ 0 under the condition $ \mathbb{E} $ \mathbb{E} X 2 < ∞ only; In [1], an explicit form of the limit $ \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _0 = n} \right) $ \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _0 = n} \right) was found under the same condition $ \mathbb{E} $ \mathbb{E} X 2 < ∞ in the case when the summand X has an arithmetic distribution. In the present paper, we prove that the main assertion in [5] fails and we correct the original proof. It worth noting that this corrected version was formulated in [8] as a conjecture.  相似文献   

4.
We prove that every Eulerian orientation of Km,n contains arc-disjoint directed 4-cycles, improving earlier lower bounds. Combined with a probabilistic argument, this result is used to prove that every regular tournament with n vertices contains arc-disjoint directed 4-cycles. The result is also used to provide an upper bound for the distance between two antipodal vertices in interchange graphs.Received February 6, 2004  相似文献   

5.
Let R be a prime ring and δ a derivation of R. Divided powers $ D_n ^{\underline{\underline {def.}} } \tfrac{1} {{n!}}\tfrac{{d^n }} {{dx^n }} $ D_n ^{\underline{\underline {def.}} } \tfrac{1} {{n!}}\tfrac{{d^n }} {{dx^n }} of ordinary differentiation d/dx form Hasse-Schmidt higher derivations of the Ore extension (skew polynomial ring) R[x; δ]. They have been used crucially but implicitly in the investigation of R[x; δ]. Our aim is to explore this notion. The following is proved among others: Let Q be the left Martindale quotient ring of R. It is shown that $ S^{\underline{\underline {def.}} } Q[x;\delta ] $ S^{\underline{\underline {def.}} } Q[x;\delta ] is a quasi-injective (R, R)-module and that any (R,R)-bimodule endomorphism of S can be uniquely expressed in the form
$ \theta (f) = \sum\limits_{n = 0}^\infty {\zeta _n D_n (f)} forf \in Q[x;\delta ], $ \theta (f) = \sum\limits_{n = 0}^\infty {\zeta _n D_n (f)} forf \in Q[x;\delta ],   相似文献   

6.
Fon-Der-Flaass (1988) presented a general construction that converts an arbitrary [(C)\vec]4\vec C_4 -free oriented graph Γ into a Turán (3, 4)-graph. He observed that all Turán-Brown-Kostochka examples result from his construction, and proved the lower bound $\tfrac{4} {9} $\tfrac{4} {9} (1 − o(1)) on the edge density of any Turán (3, 4)-graph obtainable in this way. In this paper we establish the optimal bound $\tfrac{3} {7} $\tfrac{3} {7} (1 − o(1)) on the edge density of any Turán (3, 4)-graph resulting from the Fon-Der-Flaass construction under any of the following assumptions on the undirected graph G underlying the oriented graph Γ: (i) G is complete multipartite; (ii) the edge density of G is not less than $\tfrac{2} {3} - \varepsilon $\tfrac{2} {3} - \varepsilon for some absolute constant ε > 0. We are also able to improve Fon-Der-Flaass’s bound to $\tfrac{7} {{16}} $\tfrac{7} {{16}} (1 − o(1)) without any extra assumptions on Γ.  相似文献   

7.
In this paper, the sharp estimates of all homogeneous expansions for f are established, where f(z) = (f 1(z), f 2(z), …, f n (z))′ is a k-fold symmetric quasi-convex mapping defined on the unit polydisk in ℂ n and
$ \begin{gathered} \frac{{D^{tk + 1} + f_p \left( 0 \right)\left( {z^{tk + 1} } \right)}} {{\left( {tk + 1} \right)!}} = \sum\limits_{l_1 ,l_2 ,...,l_{tk + 1} = 1}^n {\left| {apl_1 l_2 ...l_{tk + 1} } \right|e^{i\tfrac{{\theta pl_1 + \theta pl_2 + ... + \theta pl_{tk + 1} }} {{tk + 1}}} zl_1 zl_2 ...zl_{tk + 1} ,} \hfill \\ p = 1,2,...,n. \hfill \\ \end{gathered} $ \begin{gathered} \frac{{D^{tk + 1} + f_p \left( 0 \right)\left( {z^{tk + 1} } \right)}} {{\left( {tk + 1} \right)!}} = \sum\limits_{l_1 ,l_2 ,...,l_{tk + 1} = 1}^n {\left| {apl_1 l_2 ...l_{tk + 1} } \right|e^{i\tfrac{{\theta pl_1 + \theta pl_2 + ... + \theta pl_{tk + 1} }} {{tk + 1}}} zl_1 zl_2 ...zl_{tk + 1} ,} \hfill \\ p = 1,2,...,n. \hfill \\ \end{gathered}   相似文献   

8.
In this paper, we prove that the second order differential equation d^2x/dt^2+x^2n_1f(x)+p(t)=0with p(t + 1) = p(t), f(x + T) = f(x) smooth and f(x) 〉 0, possesses Lagrangian stability despite of the fact that the monotone twist condition is violated.  相似文献   

9.
D.G. Fon-Der-Flaass showed that Boolean correlation-immune n-variable functions of order m are resilient for $ m \geqslant \frac{{2n - 2}} {3} $ m \geqslant \frac{{2n - 2}} {3} . In this paper this theorem is generalized to orthogonal arrays. It is shown that orthogonal arrays of strength m not less than $ \frac{{2n - 2}} {3} $ \frac{{2n - 2}} {3} , where n is a number of factors having size at least 2 n−1 and all arrays of size 2 n−1, are simple.  相似文献   

10.
We extend the scalar curvature pinching theorems due to Peng-Terng, Wei-Xu and Suh-Yang. Let M be an n-dimensional compact minimal hypersurface in S n+1 satisfying Sf 4 f_3~2 ≤ 1/n S~3 , where S is the squared norm of the second fundamental form of M, and f_k =sum λ_i~k from i and λ_i (1 ≤ i ≤ n) are the principal curvatures of M. We prove that there exists a positive constant δ(n)(≥ n/2) depending only on n such that if n ≤ S ≤ n + δ(n), then S ≡ n, i.e., M is one of the Clifford torus S~k ((k/n)~1/2 ) ×S~...  相似文献   

11.
This paper investigates the semi-online machine covering problem on three special uniform machines with the known largest size. Denote by sj the speed of each machine, j = 1, 2, 3. Assume 0 < s1 = s2 = r ≤ t = s3, and let s = t/r be the speed ratio. An algorithm with competitive ratio max{2, (3s+6)/(s+6) } is presented. We also show the lower bound is at least max{2, (3s)/(s+6)}. For s ≤ 6, the algorithm is an optimal algorithm with the competitive ratio 2. Besides, its overall competitive ratio is 3 which matches the overall lower bound. The algorithm and the lower bound in this paper improve the results of Luo and Sun.  相似文献   

12.
Let E be a cookie-cutter set with dimH E =s. It is known that the Hausdorff s-measure and the packing s-measure of the set E are positive and finite. In this paper, we prove that for a gauge function g the set E has positive and finite Hausdorff g-measure if and only if 0 〈 liminft→0 g(t)/ts 〈 ∞. Also, we prove that for a doubling gauge function g the set E has positive and finite packing g-measure if and only if 0 〈 lim supt→0 g(t)/ts 〈 ∞.  相似文献   

13.
Approximation to the function |x| plays an important role in approximation theory. This paper studies the approximation to the function xαsgn x, which equals |x| if α = 1. We construct a Newman Type Operator rn(x) and prove max |x|≤1|xαsgn x-rn(x)|~Cn1/4e-π1/2(1/2)αn.  相似文献   

14.
The convergence behavior of best uniform rational approximants r n,m * with numerator degree n and denominator degree m on a compact set E is investigated for functions f continuous on E and ray sequences above the diagonal of the Walsh table, i. e. sequences {n,m(n)} n=1 with
$ \mathop {\lim \inf }\limits_{n \to \infty } \frac{n} {{m(n)}} \geqslant c > 1. $ \mathop {\lim \inf }\limits_{n \to \infty } \frac{n} {{m(n)}} \geqslant c > 1.   相似文献   

15.
Let {X i } i=1 be a standardized stationary Gaussian sequence with covariance function r(n) = EX 1 X n+1, S n = Σ i=1 n X i , and $\bar X_n = \tfrac{{S_n }} {n} $\bar X_n = \tfrac{{S_n }} {n} . And let N n be the point process formed by the exceedances of random level $(\tfrac{x} {{\sqrt {2\log n} }} + \sqrt {2\log n} - \tfrac{{\log (4\pi \log n)}} {{2\sqrt {2\log n} }})\sqrt {1 - r(n)} + \bar X_n $(\tfrac{x} {{\sqrt {2\log n} }} + \sqrt {2\log n} - \tfrac{{\log (4\pi \log n)}} {{2\sqrt {2\log n} }})\sqrt {1 - r(n)} + \bar X_n by X 1,X 2,…, X n . Under some mild conditions, N n and S n are asymptotically independent, and N n converges weakly to a Poisson process on (0,1].  相似文献   

16.
Normality and quasinormality of zero-free meromorphic functions   总被引:1,自引:0,他引:1  
Let k, K ∈ N and F be a family of zero-free meromorphic functions in a domain D such that for each f ∈ F , f(k)-1 has at most K zeros, ignoring multiplicity. Then F is quasinormal of order at most ν = K k+1 , where ν is equal to the largest integer not exceeding K/k+1 . In particular, if K = k, then F is normal. The results are sharp.  相似文献   

17.
Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d(2^n)〈∞,where d=2 if 1≤r〈2 and d〉r if r≥2.We prove that if E|X|^r 〈∞,for 1≤p〈2 and r〉p,then limε→0ε^2(r-p)/2-p ∑∞n=1 n^r/p-2 P{Mn≥εn^1/p}=2p/r-p ∑∞k=1(-1)^k/(2k+1)^2(r-p)/(2-p)E|Z|^2(r-p)/2-p,where Z has a normal distribution with mean 0 and variance σ^2.  相似文献   

18.
This paper deals with a coupled system of fourth-order parabolic inequalities |u|t ≥ 2u + |v|q,|v|t ≥ 2v + |u|p in S = Rn × R+ with p,q > 1,n ≥ 1.A FujitaLiouville type theorem is established that the inequality system does not admit nontrivial nonnegative global solutions on S whenever n4 ≤ max(ppq+11,pqq+11).Since the general maximum-comparison principle does not hold for the fourth-order problem,the authors use the test function method to get the global non-existence of nontrivial solutions.  相似文献   

19.
Let X:= (X jk ) denote a Hermitian random matrix with entries X jk which are independent for all 1 ≤ jk. We study the rate of convergence of the expected spectral distribution function of the matrix X to the semi-circular law under the conditions E X jk = 0, E X jk 2 = 1, and E|X jk |2+η M η < ∞, 0 < η ≤ 2. The bounds of order $ O(n^{ - \frac{\eta } {{2 + \eta }}} ) $ O(n^{ - \frac{\eta } {{2 + \eta }}} ) for 1 ≤ η ≤ 2, and those of order $ O(n^{ - \frac{{2\eta }} {{(2 + \eta )(3 - \eta )}}} ) $ O(n^{ - \frac{{2\eta }} {{(2 + \eta )(3 - \eta )}}} ) for 0 < η ≤ 1, are obtained.  相似文献   

20.
New results about some sums s n (k, l) of products of the Lucas numbers, which are of similar type as the sums in [SEIBERT, J.—TROJOVSK Y, P.: On multiple sums of products of Lucas numbers, J. Integer Seq. 10 (2007), Article 07.4.5], and sums σ(k) = $ \sum\limits_{l = 0}^{\tfrac{{k - 1}} {2}} {(_l^k )F_k - 2l^S n(k,l)} $ \sum\limits_{l = 0}^{\tfrac{{k - 1}} {2}} {(_l^k )F_k - 2l^S n(k,l)} are derived. These sums are related to the numerator of generating function for the kth powers of the Fibonacci numbers. s n (k, l) and σ(k) are expressed as the sum of the binomial and the Fibonomial coefficients. Proofs of these formulas are based on a special inverse formulas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号