首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonlinear polarization response of a medium with induced anisotropy to the action of a high-intensity pulse containing an arbitrary number (down to one) optical oscillations is studied using quantum-mechanical concepts. Based on the proposed model, a set of nonlinear wave equations is obtained for the ordinary and extraordinary components of the pulse. The previously known equations for quasi-monochromatic pulses are shown to follow from this set as a special case.  相似文献   

2.
Two-frequency correlation between the profiles of signals of the primary and long-lived (stimulated) photon echos in a three-level medium excited by combined sequences of resonance quasimonochromatic (encoding) signals and femtosecond pulses consisting of a few optical oscillations (down to one) is predicted. It is shown that the profiles of echo responses of both frequencies correlate with each other and with the profiles of encoding pulses, copy them, and induce mirror rotations, as well as scaling transformations in time in dependence on the methods of forming exciting sequences.  相似文献   

3.
The photon echo excitated in a multilevel quantum medium by two or more ultimately short pulses with duration down to one period of optical oscillations is studied theoretically. It is shown that the number of echo responses formed in the system depends on the number of quantum levels covered by the spectrum of the exciting pulses and strongly increases with this number. General equations for the spatio-temporal characteristics of the multipulse echo signals are obtained.  相似文献   

4.
We demonstrate single-shot time-frequency imaging spectroscopy with an echelon mirror for measuring ultrashort laser pulses as well as ultrafast responses of materials using the same optical setup. The echelon mirror produces a spatially encoded time delay for the probe pulse whereby both the probe and pump pulses are focused on samples with small spot size. Using the optical Kerr gate apparatus, we successfully mapped the time-frequency images of ultrashort laser pulses and subsequently evaluated the chirp characteristics with the phase-retrieval procedure on a single-shot basis. By simply replacing the Kerr medium with samples, we could also visualize the phonon-polariton oscillations in ferroelectric LiNbO3.  相似文献   

5.
6.
A method is proposed for fast and deep polarization of the system of hyperfine sublevels of the ground state of an atom having an optical excited state by means of two-component microwave pulses. The pulse of the bichromatic optical field that induces the transitions between the ground state and excited state of the atom is supposed to provide coherence among the hyperfine sublevels of the atomic ground state via the effect of coherent population trapping. The subsequent resonance microwave pulses create the polarization of equally populated ground state sublevels of the atom. The proposed polarization technique may be used for designing the new schemes of quantum computers, for the pulse transformation in optical experiments when light passes through a resonant medium containing rear-earth ions, as well as for producing polarized nuclear targets.  相似文献   

7.
The synchronization of atomic quantum transitions with natural Raman oscillations by ultrashort light pulses has been investigated. This phenomenon may be observed if the duration of the perturbation pulse is less than the period of oscillations of the forbidden atomic transitions. The accuracy of the direct measurements of the quantum transition times for trapped particles can be of the same order as the ratio of the two-photon transition frequency to the homogeneous line width.  相似文献   

8.
Polarization dynamics of optical pulses in an isotropic two-level medium is analyzed by solving an integrable system of evolution equations without using the slowly varying envelope approximation. The analysis is focused on the regime of unidirectional pulse generation in an initially inverted medium. Qualitative difference in polarization dynamics is revealed between few-cycle and quasi-monochromatic pulse propagation  相似文献   

9.
The quantum analysis of radiation from a degenerate optical parametric oscillator synchronously pumped above its oscillation threshold is presented. It is shown that pulses of signal and pump fields at the output of the oscillator have the following properties: quantum fluctuations of the fields are independent in each individual pulse, but correlated in pulses of the pulse train with a temporal step multiple of the pulse period. The number of essentially correlated pulses is on the order of the oscillator cavity finesse. Cross-correlations between the pump and signal pulses are established above the oscillation threshold. These correlations lead to a significant quantum effect in the integral characteristics of the fields. A theoretical analysis revealed that the spectrum of field fluctuations measured using a balanced homodyne detection technique of phase quadratures of the fields with a pulsed local oscillator reveals quantum noise suppression in the vicinity of frequencies that are multiples of the pulse repetition rate.  相似文献   

10.
The generation of zero and high-order harmonics in the spectrum of a laser pulse propagating through a medium containing quantum particles whose constant resonance transition dipole moment is nonzero is studied theoretically. The consideration is performed in the approximation of slowly varying envelopes modified for the case of the medium with the nonzero permanent dipole moment. It is shown that this modification requires consideration of antiresonance terms, in particular, the Bloch-Siegert shift in equations. The conditions are revealed for the efficient optical rectification and excitation of the second harmonic at a quasi-monochromatic signal applied to the medium.  相似文献   

11.
We provide a further exploration of a type of nonadiabatic rapid passage known as twisted rapid passage (TRP). This class of rapid passage pulses allows a qubit to be driven through resonance multiple times during a single TRP sweep. The multiple resonances give rise to controllable quantum interference effects that provide direct control over qubit transitions so that transitions can be greatly enhanced or suppressed. These quantum interference effects have recently been observed experimentally. We examine here a number of new TRP pulse profiles and show that they can be used to implement a quantum NOT gate that operates both nonadiabatically and with sufficient reliability to surpass the accuracy threshold needed for the gate to be used as part of a fault-tolerant scheme of quantum computation. These new TRP pulse profiles are shown to provide performance advantages over TRP pulses previously considered in the literature.  相似文献   

12.
The nonlinear dynamics of a vector two-component optical pulse propagating in quasi-resonance conditions in a medium of nonsymmetric quantum objects is investigated for Stark splitting of quantum energy levels by an external electric field. We consider the case when the ordinary component of the optical pulse induces ?? transitions, while the extraordinary component induces the ?? transition and shifts the frequencies of the allowed transitions due to the dynamic Stark effect. It is found that under Zakharov-Benney resonance conditions, the propagation of the optical pulse is accompanied by generation of an electromagnetic pulse in the terahertz band and is described by the vector generalization of the nonlinear Yajima-Oikawa system. It is shown that this system (as well as its formal generalization with an arbitrary number of optical components) is integrable by the inverse scattering transformation method. The corresponding Darboux transformations are found for obtaining multisoliton solutions. The influence of transverse effects on the propagation of vector solitons is investigated. The conditions under which transverse dynamics leads to self-focusing (defocusing) of solitons are determined.  相似文献   

13.
We have developed a theory of a transient intraband light absorption by semiconductor quantum dots. This absorption plays an important role in the two-pulse pump-probe method, which enables determining the energy relaxation rates of electron-hole excited states. We have considered all possible schemes of this process wherein the carrier frequency of optical pump pulses is close to the resonance with the interband transition of the quantum-dot electronic subsystem, while the carrier frequency of probe pulses is resonant to the intraband transition. For ensembles of identical and size-distributed quantum dots, the probe pulse energy absorption induced by the pump pulse is analyzed in relation to the delay time between the pulses. We have found that, under certain conditions, this dependence can be described by a single, two, or three exponentials. The exponents of the exponentials are proportional to the energy relaxation rates of electron-hole excited states.  相似文献   

14.
Transient nonlinear optical spectroscopy, performed on excitons confined to single GaAs quantum dots, shows oscillations that are analogous to Rabi oscillations in two-level atomic systems. This demonstration corresponds to a one-qubit rotation in a single quantum dot which is important for proposals using quantum dot excitons for quantum computing. The dipole moment inferred from the data is consistent with that directly obtained from linear absorption studies. The measurement extends the artificial atom model of quantum dot excitonic transitions into the strong-field limit, and makes possible full coherent optical control of the quantum state of single excitons using optical pi pulses.  相似文献   

15.
Based on advanced quantum theory for the Λ-scheme nonlinear interaction of optical fields in atomic Bose-Einstein condensate, the regimes of giant negative nonlinearity and absorption coefficients have been obtained for a probe light pulse. The nonlinear laser amplifier setup (under the Λ-scheme realization) for generation of the quadrature-squeezed light is presented The text was submitted by the authors in English.  相似文献   

16.
We investigate the nonlinear light propagation in InAs/InGaAs quantum-dot-in-a-well semiconductor optical amplifiers in the limit of strong optical excitation where Rabi oscillations are excited in the active medium. The amplifier is analyzed in a degenerate four-wave-mixing setup and characterized by its frequency conversion and creation performance. Our simulations show that the interplay between the nonlinear four-wave-mixing process and the coherent Rabi oscillations greatly influences the frequency conversion process. Rabi oscillations can be resonantly excited by the correct choice of the frequency detuning between pump and probe signals, which greatly enhances the nonlinear frequency conversion efficiency at frequencies up to several THz. We furthermore show that the coherent pulse shaping of ultrashort optical pulses in the quantum-dot medium can greatly enhance their spectral bandwidth, potentially allowing for ultra-broad-band frequency comb generation.  相似文献   

17.
The effect of transverse perturbations on the propagation of electromagnetic π pulses in an amplifying two-level medium is studied. The cases of quasi-monochromatic and extremely short pulses are considered. The equations describing the behavior of the transverse size of the pulse during its propagation in the medium are derived. It is shown that, if the ratios of the diffraction length to the length of dispersion spreading are smaller than certain critical values, self-focusing regimes are realized for both types of pulses. Otherwise, at a finite distance, blowup of defocusing occurs, after which the amplified pulse propagates as if it is a one-dimensional pulse, with the velocity equal to the velocity of light in vacuum. Similarities and distinctions in the dynamics of propagation of extremely short and quasi-monochromatic pulses are indicated.  相似文献   

18.
We present an observation of fluctuations in delay times of the yoked-superfluorescence pulses generated in atomic rubidium. The yoked-superfluorescence was induced through two-photon excitation of cascade transitions by ultrashort (∼100 fs) laser pulses. A statistical distribution and fluctuations of delay times were studied as the pump pulse energy varied, effectively changing the number of participating atoms. The standard deviation in the delay-time statistics decreases when the pump power increases. The experimental data support the theoretical model of the quantum fluctuations of superfluorescence.  相似文献   

19.
The ultrafast optical switching phenomena in a dense medium of two-level atoms induced by arbitrary varying pulses are explained in terms of the adiabatic cancellation of the pulse by the induced polarization. The final population inversion of the medium after the passage of the pulse is found to depend on the number of oscillations the inversion exhibits during the time interval when the normalized pulse amplitude exceeds the maximum allowed value of the atomic polarization. If the inversion undergoes an integer number of oscillations in this region, then the final state of the system returns to the ground state. On the other hand, if the inversion undergoes a half integer number of oscillations in this region, the final state of the system is fully inverted. This behavior is explored analytically and illustrated numerically for the constant, sine and secant pulse shapes.  相似文献   

20.
Nonlinear dynamics of a subnanosecond transverse elastic pulse in a low-temperature paramagnetic crystal placed into a magnetic field and statically strained in the same direction is investigated. Paramagnetic impurities implanted into the crystal have an effective spin of 3/2, and the pulse propagates at right angles to the magnetic field. In the general case, the structure of the pulse is such that the approximation of slowly varying envelopes, which is standard for quasi-monochromatic signals, is inapplicable. Under certain conditions, the pulse propagation in the 1D case is described by the Konno-Kameyama-Sanuki integrable wave equation for strain, which is transformed into the Hirota equation for the envelope of the given strain in the quasi-monochromatic limit. The effect of transverse perturbations on extremely short and quasi-monochromatic solitons is studied in detail. The conditions and features of self-focusing and defocusing of acoustic solitons in the form of extremely short pulses and envelope solitons are revealed. The propagation of an extremely short “half-wave” hypersonic pulse in the “acoustic bullet” regime in the medium with a quasiequilibrium population of quantum sublevels of effective spins is predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号