首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Two-dimensional hypersonic rarefied gas flow around blunt bodies is investigated for the continuum to free-molecular transition regime. In [1], as a result of an asymptotic analysis, three rarefied gas flow regimes, depending on the relationship between the problem parameters, were detected and one of these regimes was investigated. In the present study, asymptotic solutions of the thin viscous shock layer equations at small Reynolds numbers are obtained for the other two flow regimes. Analytical expressions for the heat transfer, friction and pressure coefficients are obtained as functions of the incident flow parameters and the body geometry and temperature. As the Reynolds number tends to zero, the values of these coefficients approach their values in free-molecular flow. The scaling parameters of hypersonic rarefied gas flow around bodies are determined for different regimes. The asymptotic solutions are compared with the results of direct Monte Carlo simulation.  相似文献   

2.
This paper presents the analytic solution for flow of a magnetohydrodynamic (MHD) Sisko fluid through a porous medium. The non-linear flow problem in a porous medium is formulated by introducing the modified Darcy’s law for Sisko fluid to discuss the flow in a porous medium. The analytic solutions are obtained using homotopy analysis method (HAM). The obtained analytic solutions are explicitly expressed by the recurrence relations and can give results for all the appropriate values of material parameters of the examined fluid. Moreover, the well-known solutions for a Newtonian fluid in non-porous and porous medium are the limiting cases of our solutions.  相似文献   

3.
In this paper, the unsteady three‐dimensional boundary layer flow due to a stretching surface in a viscous and incompressible micropolar fluid is considered. The partial differential equations governing the unsteady laminar boundary layer flow are solved numerically using an implicit finite‐difference scheme. The numerical solutions are obtained which are uniformly valid for all dimensionless time from initial unsteady‐state flow to final steady‐state flow in the whole spatial region. The equations for the initial unsteady‐state flow are also solved analytically. It is found that there is a smooth transition from the small‐time solution to the large‐time solution. The features of the flow for different values of the governing parameters are analyzed and discussed. The solutions of interest for the skin friction coefficient with various values of the stretching parameter c and material parameter K are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Hypersonic rarefied flow past blunt bodies is studied in the continuum-free-molecular transition regime. On the basis of an asymptotic analysis three rarefied gas flow patterns are established depending on the relation between the relevant parameters of the problem. In the first regime corresponding to a cold surface asymptotic solutions of the equations of a thin viscous shock layer are derived at low Reynolds numbers in the axisymmetric and plane cases. Simple analytical expressions for the pressure and the heat transfer and friction coefficients are obtained as functions of the freestream parameters and the body geometry. With decrease in the Reynolds number the coefficients approach the values corresponding to free-molecular flow. In this regime a similarity parameter for the hypersonic rarefied flow past bodies is determined. The asymptotic solutions are compared with numerical solutions and the results of direct statistical simulation by the Monte Carlo method.  相似文献   

5.
An analysis is presented to investigate the time-mean characteristics of the laminar boundary layer near an axisymmetric stagnation point when the velocity of the oncoming flow relative to the body oscillates. Different solutions are obtained for the small and high values of the reduced frequency parameter. The range of Reynolds number considered was from 0.01 to 100. Numerical solutions for the velocity functions are presented, and the wall values of the velocity gradients are tabulated.  相似文献   

6.
The instability and regular nonlinear waves in the film of a heavy viscous liquid flowing along the wall of a round tube and interacting with a gas flow are investigated. The solutions for the wave film flows are numerically obtained in the regimes from free flow-down in a counter-current gas stream to cocurrent upward flow of the film and the gas at fairly large gas velocities. Continuous transition from the counter-current to the cocurrent flow via the state with a maximum amplitude of nonlinear waves and zero values of the liquid flow rate and the phase velocity is investigated. The Kapitsa-Shkadov method is used to reduce a boundary value problem to a system of evolutionary equations for the local values of the layer thickness and the liquid flow rate.  相似文献   

7.
Merkin  J. H.  Pop  I. 《Transport in Porous Media》1997,29(3):355-364
The mixed convection boundary-layer flow on a horizontal impermeable surface embedded in a saturated porous medium and driven by a local heat source is considered. Similarity solutions are obtained for specific outer flow variations and these are shown to have a solution only for parameter values greater than some critical value. When this is not the case the solution develops a singularity at a finite distance from the leading edge. The nature of this singularity is also discussed.  相似文献   

8.
The axisymmetric laminar boundary layer flow along the entire length of a semi-infinite stationary cylinder under an accelerated free-stream is investigated. Considering flow at reduced dimensions, the boundary layer equations are developed with the conventional no-slip boundary condition for tangential velocity and temperature replaced by a linear slip-jump boundary condition. Asymptotic series solutions are obtained for the heat transfer coefficient in terms of the Nusselt number. These solutions correspond to prescribed values of the momentum and temperature slip coefficients and the index of acceleration. Heat transfer at both small and large axial distances is determined in the form of series solutions; whereas at intermediate distances, exact and interpolated numerical solutions are obtained. Using these results, the heat transfer along the entire cylinder wall is evaluated in terms of the parameters of acceleration and slip.  相似文献   

9.
The interaction of a rotating flow and a stationary surface is discussed for a second-order non-Newtonian liquid. Similarity solutions of the governing partial differential equations are obtained for the case of the outer flow in solid-body rotation. The results for the Newtonian case are compared with Bödewadt's series solution of this problem. The non-Newtonian solutions indicate that for certain values of the parameters characterizing the non-linear viscous response and normal stress effects a larger secondary flow is induced in the boundary layer than in the Newtonian case.Also at North Carolina State University Raleigh (N.C.), U.S.A.  相似文献   

10.
The transient development of cooling-induced flow in a triangular domain filled with water is studied by means of numerical simulation as a model for flow developing in the littoral region of lakes or coasts. The domain is fitted in polar co-ordinates; solutions are obtained for different values of the independent parameters of the model, which are the Rayleigh number (Ra), the Prandtl number (Pr) and the slope of the domain (S). Within the ranges examined, as Ra is increased, different regimes of the developing flow are observed; these are found qualitatively to be insignificantly influenced by changes in S, whereas the flow is found to be quantitatively insensitive to Pr for high enough values of Pr. Several interesting features of the flow are depicted and integral values useful in the analysis of flow in lakes are extracted.  相似文献   

11.
J. C. Umavathi  I. C. Liu 《Meccanica》2013,48(9):2221-2232
The problem of steady, laminar mixed convective flow and heat transfer of an electrically conducting fluid through a vertical channel with heat source or sink is analyzed. The effects of viscous and Ohmic dissipations are included in the energy equation. Both walls are kept either at the same or different temperatures such as isothermal-isothermal, isoflux-isothermal and isothermal-isoflux conditions. Analytical solutions are found using regular perturbation technique and numerical solutions are found using finite difference method. A selected set of graphical results illustrating the effects of various parameters involved in the problem on the flow as well as flow reversal situation and Nusselt numbers are presented and discussed. It is also found that both the analytical and numerical solutions agree very well for small values of the perturbation parameter.  相似文献   

12.
The effects of suction/injection on steady laminar mixed convection boundary layer flow over a permeable horizontal surface of a wedge in a viscous and incompressible fluid is considered in this paper. The similarity solutions of the governing boundary layer equations are obtained for some values of the suction/injection parameter f 0, the constant exponent m of the wall temperature as well as the mixed convection parameter λ. The resulting system of nonlinear ordinary differential equations is solved numerically for both assisting and opposing flow regimes using an implicit finite-difference scheme known as the Keller-box method. Numerical results for the reduced skin friction coefficient, the local Nusselt number, and the velocity and temperature profiles are obtained for various values of parameters considered. Dual solutions are found to exist for the case of opposing flow.  相似文献   

13.
The problem of combined free and forced convective magnetohydrodynamic flow in a vertical channel is analysed by taking into account the effect of viscous and ohmic dissipations. The channel walls are maintained at equal or at different constant temperatures. The velocity field and the temperature field are obtained analytically by perturbation series method and numerically by finite difference technique. The results are presented for various values of the Brinkman number and the ratio of Grashof number to the Reynolds number for both equal and different wall temperatures. Nusselt number at the walls is determined. It is found that the viscous dissipation enhances the flow reversal in the case of downward flow while it counters the flow in the case of upward flow. It is also found that the analytical and numerical solutions agree very well for small values of ε.  相似文献   

14.
Self-similar solutions are obtained in [1, 2] to the Navier-Stokes equations in gaps with completely porous boundaries and with Reynolds number tending to infinity. Approximate asymptotic solutions are also known for the Navier-Stokes equations for plane and annular gaps in the neighborhood of the line of spreading of the flow [3, 4]. A number of authors [5–8] have discovered and studied the effect of increase in the stability of a laminar flow regime in channels of the type considered and a significant increase in the Reynolds number of the transition from the laminar regime to the turbulent in comparison with the flow in a pipe with impermeable walls. In the present study a numerical solution is given to the system of Navier-Stokes equations for plane and annular gaps with a single porous boundary in the neighborhood of the line of spreading of the flow on a section in which the values of the local Reynolds number definitely do not exceed the critical values [5–8]. Generalized dependences are obtained for the coefficients of friction and heat transfer on the impermeable boundary. A comparison is made between the solutions so obtained and the exact solutions to the boundary layer equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 21–24, January–February, 1987.  相似文献   

15.
The unsteady stagnation-point flow of a viscous fluid impinging on an infinite plate in the presence of a transverse magnetic field is examined and solutions are obtained. It is assumed that the infinite plate at y=0 is making harmonic oscillations in its own plane. A finite difference technique is employed and solutions for small and large frequencies of the oscillations are obtained for various values of the Hartmann's number.  相似文献   

16.
《Comptes Rendus Mecanique》2017,345(2):117-124
Simulations using a Restricted Nonlinear (RNL) system, where mean flow distortion resulting from Reynolds stress feedback regenerates rolls, is applied in a channel flow under subcritical conditions. This quasi-linear restriction of the dynamics is used to study invariant solutions located in the bulk of the flow found recently by Rawat et al. (2016) [14]. It is shown that the RNL system truncated to a single streamwise mode for the perturbation supports invariant solutions that are found to bifurcate from a relative periodic orbit into a travelling wave solution when the spanwise size is increasing. In particular, the travelling wave solution exhibits a spanwise localized structure that remains unchanged for large values of the spanwise extent as the invariant solution lying on the lower branch found by Rawat et al. (2016) [14]. In addition, travelling wave solutions provided by this minimal RNL system are self-similar with respect to the Reynolds number based on the centreline velocity, and the half-channel height varying from 2000 to 5000.  相似文献   

17.
 The effect of uniform suction on the steady two-dimensional laminar forced flow of a viscous incompressible fluid of temperature dependent viscosity past a wedge with uniform surface heat flux is considered. The governing equations for the flow are obtained by using suitable transformations and are solved by using an implicit finite difference method. Perturbation solutions are also obtained near the leading edge and in the downstream regime. The results are obtained in terms of the local skin friction coefficient and the rate of heat transfer for various values of the pertinent parameters, such as the Prandtl number, Pr, the velocity gradient parameter, m, the local suction parameter, ξ, and the viscosity variation parameter, ɛ. Perturbation solutions are compared with the finite difference solutions and are found to be in excellent agreement. The effect of ξ, m and ɛ on the dimensionless velocity profiles and viscosity distribution are also presented graphically for Pr = 0.7 and 7.0, which are the appropriate values for gases and water respectively. Received on 22 July 1999  相似文献   

18.
Assisting and opposing flows in a mixed convection boundary layer flow over an isothermal vertical plate are studied for the case of variable physical properties and uniform free stream. Fluid viscosity and thermal conductivity are assumed to be linear functions of temperature. Using local similarity the flow and heat transfer quantities are found to be functions of four parameters, i.e. Richardson number, Prandtl number, a viscosity variation parameter and a thermal conductivity variation parameter. Numerical solutions are obtained by two methods, a shooting technique and Nachtsheim-Swigert technique, for selected values of parameters appropriate for the fluids considered and specific temperatures of the plate and ambient fluid. For assisting flows, there exist solutions for all values of Richardson number while for opposing flows solutions exist only for a finite set of its values and, in addition, there also exist dual solutions. Important flow and heat transfer quantities of practical interest are determined and the influence of different parameters is discussed.  相似文献   

19.
Solutions to the fourth order non-linear systems arising in combined free and forced convection flow of a second order fluid, over a stretching sheet, are obtained. Existence (or non-existence) and uniqueness (or non-uniqueness) results of the problem are obtained and discussed. Moreover, ranges of parametric values are obtained for which the system has a unique pair of solutions, a double pair of solutions, and infinitely many monotonically decaying solutions at infinity.  相似文献   

20.
A. Ishak  R. Nazar  I. Pop 《Meccanica》2008,43(4):411-418
The mixed convection two-dimensional boundary layer flow of a micropolar fluid near the stagnation point on a stretching vertical sheet is investigated. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the stagnation point. The transformed ordinary differential equations are solved numerically for some values of the parameters involved using a finite-difference scheme known as the Keller-box method. The features of the flow and heat transfer characteristics are analyzed and discussed. Both assisting and opposing flows are considered. Results are presented in terms of the skin friction coefficient and the local Nusselt number with selections of velocity, microrotation and temperature profiles. Dual solutions are found to exist for the opposing flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号