共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
活性炭纤维的微孔结构水吸附 总被引:3,自引:0,他引:3
测定了两种活性炭纤维(ACF)的氮气、水吸附等温线和XPS,研究了ACF的微孔结构和表面性质,用αs图分析氮吸附等温线获得了ACF的比表面积、微孔容量和微孔径。XPS表明在ACF表面存在多种不同结合状态的氧。水在ACF上的吸附等温线呈V型,具有很大的脱附滞后环。水通过与ACF表面的氧形成氢键发生吸附。ACF表面的初始吸附点多,则在低、中压时的水吸附量就大。 相似文献
3.
微波再生对活性炭循环吸附SO_2的影响 总被引:1,自引:0,他引:1
研究了脱硫活性炭的微波再生及其对烟气中SO2的循环吸附特性。通过扫描电镜、N2吸附、元素分析、Boehm滴定等表征了微波再生对活性炭孔隙结构和表面化学性质的影响,分析了微波再生对活性炭循环吸附烟气中SO2的影响规律。结果表明,微波再生是脱硫活性炭再生的有效手段,在合适的再生功率下,经过多次循环吸附/再生后,活性炭仍然保持较高的吸附容量,吸附17次后再生活性炭仍然高于原始活性炭,但同时由于再生过程中存在C与H2SO4的反应,活性炭存在明显的烧失现象。初次再生后,活性炭的表面酸性官能团在高温下基本完全分解,碱性官能团含量上升,活性炭的SO2吸附容量明显提高;多次吸附/再生循环后,再生反应起到了活化的作用,使活性炭的孔结构变狭长,微孔比表面积和微孔容积呈上升趋势,同时酸性和碱性官能团基本保持稳定,活性炭的SO2吸附容量逐渐增加。 相似文献
4.
论文以活性炭为主体吸附剂,进行氯化铁改性,制备出氯化铁改性活性炭吸附剂,并通过FT-IR、SEM、比表面积和孔体积进行表征。实验进一步探究改性活性炭对Pb2+的吸附能力,结果表明,当吸附时间为300 min,吸附剂投加量为0.4 g, pH为6时,吸附效果最佳。在此吸附条件下,改性活性炭对Pb2+的去除率达到91.2%。对改性活性炭吸附Pb2+进行动力学吸附研究,结果表明二级速率方程能够更好地描述其动力学吸附过程,吸附的机理可归结为氯化铁改性导致活性炭孔道结构中酸性官能团增加,使得金属阳离子与官能团上的H之间产生离子交换作用,有利于吸附的进行,这一实验结果为后期循环吸附研究提供了新依据。 相似文献
5.
几种植物基活性炭材料的表面结构与吸附性能比较-(Ⅱ)表面化学结构与吸附性能研究 总被引:1,自引:0,他引:1
用X-射线光电子能谱对3种植物基活性炭材料椰壳活性炭(CAC4)、剑麻茎基活性炭(SSAC)和剑麻基活性碳纤维(SACF)的表面化学结构进行了表征,并研究和对比了它们的吸附性能,包括对碘、苯酚和亚甲基蓝的液相吸附性能,对有机蒸汽的吸附性能以及对Au3+的还原吸附性能等.结果表明,3个样品表面均含有多种含氧官能团,吸附能力SACF>SSAC>CAC4.样品的吸附性能主要取决于自身孔结构,与其表面化学结构也有密切的关系. 相似文献
6.
为加强学生对吸附单元操作基础知识的理解、提升实验研究技能,设计了“活性炭表面改性及其苯吸附性能研究”综合性实验项目。该项目设立了吸附剂基本性质分析、表面改性、吸附性能表征及动态吸附等内容,分别训练学生实验研究、实验操作、仪器表征、图谱解析及实验结果总结分析的能力。经过实验训练,学生掌握了N2吸/脱附仪、傅里叶变换红外光谱仪(FTIR)和扫描电子显微镜(SEM)的仪器操作与图谱解析方法;学会了表面改性实验及活性炭碘吸附值、亚甲基蓝吸附值和动态吸附性能测试的实验方法与结果的归纳分析;还结合所学吸附单元操作基本原理,研究揭示实验研究的规律性结果。本综合性实验在加强学生对吸附单元操作相关知识掌握的同时,能激发学生的学习兴趣、提升专业综合能力。 相似文献
7.
测定了3种植物基活性炭材料:椰壳活性炭 (CAC4)、剑麻茎基活性炭 (SSAC) 和剑麻基活性碳纤维 (SACF) 的氮吸附等温线,并用不同的理论方法对其孔结构进行了分析和表征。结果表明:CAC4为微孔型,孔径分布集中且大部分是0.7nm以下的极微孔;在相同条件下制备的SSAC和SACF孔分布较为相似,都呈多分散性,结构中除微孔外,还含有丰富的中孔,中孔率均超过50%以上。两者相比,SACF的中孔量和平均孔径更大。3个样品的形态特征和孔结构虽然不同,但其吸附过程都可以用微孔多段填充机理来解析。 相似文献
8.
9.
10.
11.
Milton Rogério Pereira Pedro Augusto Arroyo Maria Angélica Simões Dornellas de Barros Viviane Monteiro Sanches Edson Antonio da Silva Isabel Maria Fonseca Rafael García Lovera 《Adsorption》2006,12(2):155-162
In this work, Cr(III) adsorption on activated carbon obtained from olive stones in an upflow fixed-bed column at 30∘C was studied. The flow rate influence on the breakthrough curves at a feed concentration of 0.87 meq/L was investigated in
an attempt to minimize the diffusional resistances. Breakthrough curves for a flow range of 2–8 mL/min were obtained at 10.5
cm bed height and inlet diameter of 0.9 cm. The mass transfer parameters indicated that the bed minimal resistance was attained
at 2 mL/min. Therefore, the data equilibrium was carried out until the bed was saturated at 2 mL/min. The dynamic system generated
a favorable isotherm with a maximum chromium uptake of 0.45 meq/g. A column sorption mathematical model was created considering
the axial dispersion in the column and the intraparticle diffusion rate-controlling steps. The isotherm was successfully modeled
by the Langmuir equation and the mathematical model described the experimental dynamic data adequately for feed concentrations
from 0.26 to 3.29 meq/L. 相似文献
12.
Giraldo Liliana Moreno-Piraján Juan Carlos 《Journal of Thermal Analysis and Calorimetry》2018,132(1):337-342
Journal of Thermal Analysis and Calorimetry - The heat capacity of monazite-type LaPO4 and PrPO4 nanocrystalline whiskers, with a diameter of 30 to 45 nm and length 1–1.5 μm,... 相似文献
13.
D. P. Vargas L. Giraldo A. Erto J. C. Moreno-Piraján 《Journal of Thermal Analysis and Calorimetry》2013,114(3):1039-1047
The development of materials with potential application for CO2 capture is a topic of great scientific interest. Activated carbons (AC) can be conveniently used as CO2 adsorbents thanks to their microporous structure and tunable chemical properties. In this work, two AC honeycomb monoliths were synthesized starting from African palm stones through activation either with H3PO4 or with ZnCl2 solution. Surface functionalization was performed in order to add nitrogen groups, aiming at an enhancement of CO2 adsorption capacity. This chemical modification was performed either with ammonia in gas phase or a with 30 % ammonium hydroxide aqueous solution on both AC monolith samples. The original and modified monoliths were characterized by N2 adsorption at 77 K, infrared spectroscopy, Boehm titration, and immersion calorimetry in benzene and water. CO2 adsorption on both raw and functionalized AC monoliths was evaluated in volumetric equipment at a temperature of 273 K and until 1 bar, and adsorption capacity ranging between 120 and 220 mgCO2 g AC ?1 was obtained. The experimental results indicated that both methods of chemical modification determined an increase in the content of superficial nitrogen groups and thus an increase in CO2 adsorption capacity, the treatment with ammonium hydroxide being slightly preferable. 相似文献
14.
为研究影响碳基吸附剂吸附超临界温度气体的主要因素,选择石墨化热解碳黑BP280和Ajax活性炭,分析超临界温度高压甲烷在其上的吸附平衡。应用容积法,在压力0~20.5 MPa、温度253 K~313 K测定甲烷的吸附平衡数据,并由等量吸附线标绘和亨利定律常数确定等量吸附热。引入通用吸附等温方程,再由方程的Langmuir标绘确定最大吸附容量,进而通过方程的线性化计算吸附平衡态中甲烷分子的作用能。结果表明,甲烷在两种吸附剂上的最大吸附容量均随温度而变化,并都小于液态甲烷的密度;甲烷在碳黑和活性炭上的等量吸附热分别为11.9 kJ/mol~12.5 kJ/mol和17.5 kJ/mol~22.5 kJ/mol,体现了两种吸附剂不同的表面能量分布;甲烷分子间作用能随吸附量的变化特点反映了超临界温度甲烷以类似于压缩气体状态聚集的特点和吸附剂结构上的差异。碳基吸附剂的比表面积和微孔容积是影响其储存甲烷容量的重要因素。 相似文献
15.
Two series of zeolite X/activated carbon composites with different ratios of zeolite and activated carbon were prepared through a combination process of CO2 activation of the mixtures of elutrilithe and pitch and subsequent hydrothermal crystallization in alkaline solution. An additional surface modification was achieved in diluted NH4Cl solution. CO2 and N2 uptakes on the composites before and after modification were determined for pressures up to 101?kPa at 273 and 298?K, respectively. Langmuir-Freundlich and Toth adsorption models were used to describe the adsorption isotherms of CO2 and the corresponding heats of adsorption were estimated with the Clausius-Clapeyron equation. Both before and after modification, all composites exhibited a remarkable preferential adsorption of CO2 compared to N2, with the modified composites showing a higher adsorption selectivity to CO2 over N2 than the unmodified composites. With an increasing ratio of zeolite in the composites, adsorption capacity and adsorption heat of CO2 on the composites increased simultaneously. Lower adsorption heat was observed both before and after modification especially at the low-loading region and when there was less energetic heterogeneity on the surface of the modified composites. The results may be attributed to the elimination of strong basic sites on the modified composites, which is favorable for desorption of CO2 on the adsorbents and application in pressure swing adsorption processes. 相似文献
16.
Li Kunlin Li Kai Wang Chi Ning Ping Sun Xin Song Xin Wang Yingwu 《Research on Chemical Intermediates》2020,46(7):3459-3476
Research on Chemical Intermediates - Polyacrylonitrile (PAN)-based activated carbon fiber (ACF) was prepared by CO2 and KOH activation method, respectively, and used for the adsorption of CS2 at... 相似文献
17.
18.
《Journal of Energy Chemistry》2020,(3)
Porous carbon materials with developed porosity,high surface area and good thermal-and chemicalresistance are advantageous for gas adsorption and separation.However,most carbon adsorbents are in powder form which exhibit high pressure drop when deployed in practical separation bed.While monolithic carbons have largely addressed the pulverization problem and preserved kinetics and usually suffer from abrasion during multiple adsorption-desorption cycles.Herein,we proposed the designed synthesis of mechanically robust carbon monoliths with hierarchical pores,solid nitrogen-containing framework.The synthesis started with the polymerization of resorcinol and formaldehyde under weakly acidic conditions generated from cyanuric acid,and then an appropriate amount of hexamethylenetetramine(HMTA)was added as a crosslinker to prompt the formation of three dimensional frameworks.After carbonization process,the as-obtained porous carbon monoliths have a high radial compressive strength of 886 N/cm as well as a BET specific surface area of up to 683 m~2/g.At approximately 1 bar,the CO_2 equilibrium capacities of the monoliths are in the range of 3.1–4.0 mmol/g at 273 K and of 2.3–3.0 mmol/g at 298 K,exhibiting high selectivity for the capture of CO_2 over N_2 from a stream which consists of 16.7%(v%)CO_2 in N_2.Meanwhile,they undergo a facile CO_2 release in an argon stream at 298 K,indicating a good regeneration capacity.After cycle testing,sieving and regeneration,the adsorbent has no mass loss,compared to that of its fresh counterpart. 相似文献
19.
We used experimental design methodologies to obtain the response surface of the adsorption process for three acid dyes used in the dyeing step of a tanning process. The dyes were Acid Red 97, Acid Orange 61 and Acid Brown 425. The adsorption process was evaluated determining the concentrations of individual and total dyes remaining in solution at the end of the process. These concentrations were determined simultaneously in a single step using sequential injection analysis with multivariate curve resolution alternating least squares (SIA-MCR-ALS). This method involves fractional factorial designs and the steepest ascent method to find a zone of efficient adsorption and a response surface-modeling step to fit the relevant adsorption factors for the response. 相似文献
20.
L. Gonzalo-Chacón A. Arcoya I. Rodríguez-Ramos E. Gallegos-Suárez A. Guerrero-Ruiz 《Adsorption》2011,17(3):595-602
Modifications of texture and surface properties of a commercial activated carbon (Norit GF-40) were performed by several treatments
in order to study their effects on the selective adsorption of nitromethane from nitromethane/water vapor mixtures. Characterisation
of the samples by nitrogen adsorption and thermal analysis showed that HNO3 treatments produce important losses of porosity and surface area, accompanied of an increase of oxygenated functional groups
on the surface of carbon, which are progressively removed by heating at temperatures between 573 and 1073 K. All this leads
to a drastic decrease of the adsorption capacity per gram of adsorbent with respect to the raw carbon, which offers, on the
other hand, the best adsorptive performance. Oxidation by H2O2 does not practically affect its textural properties and introduces an important amount of oxygen functional groups at the
surface, but changes in the adsorptive properties of carbon are insignificant. Sample oxidised by H2O2 and subsequently treated by diethylentriamine shows a decrease in adsorption capacity, without any relevant loss of surface
area. The raw carbon treated at high temperature that exhibits the highest surface area and where surface functional groups
are absent, showed the greatest adsorption capacity for nitromethane, being much more selective for nitromethane than for
water, in nitromethane-water mixtures. Adsorption capacity values for nitromethane on the different samples are related to
the extent of the surface area, while water vapour adsorption seems to depend on the population of functional groups at the
surface, which may work as adsorption sites. 相似文献