首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以对甲苯磺酸为掺杂剂, 三氯化铁为氧化剂, 化学氧化吡咯制备了对甲苯磺酸掺杂聚吡咯. 考察了掺杂剂与氧化剂的用量对掺杂聚吡咯电导率的影响, 得到了高电导率聚吡咯的优化条件, 用UV, IR和SEM对其结构和形貌进行了表征. 结果表明, n(对甲苯磺酸)∶n(吡咯)∶n(三氯化铁)=0.75∶1∶0.5时, 合成的聚吡咯的形貌规则, 电导率达42.7 S•cm-1. 以聚吡咯为功能成分, 环氧树脂为成膜物质, 得到一种功能膜, 旋涂于金属镁表面, 采用极化曲线和开路电位考察了含有聚吡咯的膜层对金属镁的防腐蚀性能. 结果表明, 含有聚吡咯的膜层对金属镁有很好的防腐蚀性能, 腐蚀电流为0.0981 A, 腐蚀电位为-0.88 V, 在膜层与金属镁之间形成了一层钝化膜.  相似文献   

2.
分别用聚二甲基硅氧烷(PDMS)和甲基丙烯酸甲酯(MMA)作为添加剂,将1060铝浸于稀土铈盐的溶液中,在其表面形成化学转化膜,通过扫描电镜、极化与阻抗测试等分析转化膜的形貌,并研究其耐腐蚀性能.结果表明,加入添加剂后转化膜形貌更加均匀、致密,耐腐蚀性能明显提高.PDMS有消泡作用,促进铈离子沉淀,提高膜层的平整性.MMA可发生聚合,参与转化膜的形成,改善膜层的致密性.分别在PDMS为1.48g·L-1和MMA为0.96g·L-1时得到最佳效果,浓度过低或过高都会抑制转化膜的转化.  相似文献   

3.
以对甲苯磺酸为掺杂剂, 三氯化铁为氧化剂, 化学氧化吡咯制备了对甲苯磺酸掺杂聚吡咯. 考察了掺杂剂与氧化剂的用量对掺杂聚吡咯电导率的影响, 得到了高电导率聚吡咯的优化条件, 用UV, IR和SEM对其结构和形貌进行了表征. 结果表明, n(对甲苯磺酸)∶n(吡咯)∶n(三氯化铁)=0.75∶1∶0.5时, 合成的聚吡咯的形貌规则, 电导率达42.7 S•cm-1. 以聚吡咯为功能成分, 环氧树脂为成膜物质, 得到一种功能膜, 旋涂于金属镁表面, 采用极化曲线和开路电位考察了含有聚吡咯的膜层对金属镁的防腐蚀性能. 结果表明, 含有聚吡咯的膜层对金属镁有很好的防腐蚀性能, 腐蚀电流为0.0981 A, 腐蚀电位为-0.88 V, 在膜层与金属镁之间形成了一层钝化膜.  相似文献   

4.
在水溶液中将聚六亚甲基单胍盐酸盐(PHGH)共价接枝在经多巴胺自聚合改性的聚砜膜表面, 制备具有抗菌性能的纳滤膜. 采用全反射红外光谱(ATR-FTIR)、 扫描电子显微镜(SEM)和接触角测试考察膜表面的结构、 形貌和亲水性变化. 探讨PHGH含量对膜的接枝度及分离性能的影响, 并对膜的抗菌性能进行了评价. 结果表明, 经过多巴胺的自聚合和表面接枝PHGH后, 聚砜膜表面形成了具有纳滤分离性能的活性层, 并且膜表面亲水性得到改善. 随着PHGH含量的增大, 膜的纯水通量降低, 而对无机盐和染料的截留性能提高. 接枝后的复合膜具有较高的抗菌性能, 当PHGH含量为3%(质量分数)时, 抗菌率可达98.5%.  相似文献   

5.
以苯乙烯和甲基丙烯酸甲酯混合物作为油相, 采用反相微乳液法制备了AgCl纳米粒子; 通过微乳液原位聚合油相单体得到包含AgCl纳米粒子的聚合乳液; 将聚合乳液与聚偏氟乙烯(PVDF)通过共混法构建了包含AgCl纳米粒子的PVDF共混杂化膜. 紫外-可见光谱、 透射电子显微镜(TEM)及扫描电子显微镜(SEM)等表征结果和超滤实验结果表明, 聚合乳液加入的同时引入了亲水性聚合物和表面亲水的AgCl纳米粒子, 不仅改善了PVDF共混杂化膜的孔隙率和平均孔径, 还显著增强了PVDF共混杂化膜的极性和亲水性, 最终提升了膜的水通量和抗污染性能; 过量聚合乳液加入后不能与PVDF材料均匀共混, 而且AgCl纳米粒子也会在膜中形成团聚物堵塞膜孔隙, 从而削弱了膜的水通量和抗污染性能.  相似文献   

6.
在金属表面构建超疏水膜层是一种有效的防腐技术,本文采用水热处理和自组装技术在铝合金表面构建了超疏水膜层来提升铝合金的耐蚀性能. 通过对不同水热时间下制备的铝合金超疏水表面的电化学性能以及表面形貌进行测试分析,发现当水热反应时间为6 h时,制备的超疏水铝合金超疏水性和电化学性能达到最佳,接触角能达到155.5o,在模拟海水溶液中保护效率能达到99.6%.  相似文献   

7.
以丙烯腈(AN)、甲基丙烯酸甲酯(MMA)、丙烯醛(A)为单体,采用乳液聚合法制成一种共聚物———聚(丙烯腈 甲基丙烯酸甲酯 丙烯醛) (PAMA) .将PAMA作为第二共聚物与聚(偏氟乙烯 六氟丙烯) (PVDF -HFP)共混,并向反应体系中添加纳米级SiO2 ,充分混合后利用二次相转移法制得薄膜,并对所得薄膜的断面形貌、吸附性能、热性能、导电性能等进行了测试.研究发现,SiO2 的加入增大了膜中微孔体积,改善了微孔分布,且增大了电解液的吸附量;共聚物PAMA的组成影响薄膜的吸附性能,其中极性较大的丙烯醛单元和丙烯腈单元起着决定性作用;PAMA含量的增加使得共混膜吸附电解液量增加.制得共混膜的离子电导率达2 . 30×10 - 3S cm .  相似文献   

8.
通过悬浮聚合的方法,用不同表面结构的纳米SiO2对聚甲基丙烯酸甲酯(PMMA)进行原位改性,得到纳米SiO2/聚甲基丙烯酸甲酯复合材料;利用红外光谱仪分析了复合材料的界面化学结构,利用热分析仪测定了其热稳定性,并采用冲击试验机测定了其力学性能.结果表明,不同表面结构的纳米SiO2均参与甲基丙烯酸甲酯的聚合反应,与PMMA基体之间形成化学键;而表面修饰有双键的纳米SiO2更易与甲基丙烯酸甲酯聚合,能更有效地提高PMMA的抗冲击性能.  相似文献   

9.
首先以SiO_2纳米粒子作为Pickering乳化剂稳定含有苯胺、甲基丙烯酸缩水甘油酯(GMA)和1,6-己二醇二丙烯酸酯(HDDA)的油相;然后以紫外光引发GMA和HDDA聚合,在油水界面快速形成聚甲基丙烯酸缩水甘油酯(PGMA)壳层;最后加入过硫酸铵引发苯胺在油水界面的化学氧化聚合形成聚苯胺(PANI)壳层,从而得到PGMA@PANI微胶囊。该微胶囊具有复合壳层结构,PGMA壳层可以稳定乳液滴形貌并提高微胶囊韧性,PANI壳层赋予微胶囊防腐及pH响应释放性能。在PGMA@PANI微胶囊内部负载缓蚀剂2-巯基苯并噻唑(MBT)后形成的MBT-PGMA@PANI微胶囊具备双重防腐蚀功能。电化学阻抗谱测试研究表明将MBTPGMA@PANI微胶囊添加到环氧树脂涂层中可显著提高涂层的防腐蚀性能。  相似文献   

10.
采用修饰Langmuir-Blodget(LB)膜法以二十烷酸(AA)LB膜为模板,通过3,4-亚乙基二氧噻吩(EDOT)单体在LB膜亲水基团间聚合,制备了二十烷酸/聚(3,4-亚乙基二氧噻吩)(AA/PEDOT)复合LB膜.UV-Vis、FTIR和XPS分析表明EDOT在多层膜中有效聚合,生成了PEDOT导电聚合物;X射线衍射(XRD)和二次离子质谱(SIMS)分析表明薄膜具有较好的层状有序结构,进一步研究发现EDOT在AA多层膜中的聚合破坏了原有LB膜的有序性,这可能与聚合过程对层状结构产生的破坏作用有关;采用四探针仪及半导体测试仪研究了薄膜导电性能,发现AA/PEDOT多层膜的电导率随处理时间的变化产生突变,这与多层膜中导电通道的"逾渗"有关,在有效导电网络连通后电导率发生了突变.测试结果还表明AA层和PEDOT层之间具有较为明显的界面,PEDOT显示出较好的定域性,薄膜具有很好的层状有序结构.  相似文献   

11.
张恒  王华  蔺存国  王利  苑世领 《化学学报》2013,71(4):649-656
采用分子动力学方法研究了吸附在聚二甲基硅氧烷(PDMS)和接枝聚磺酸基甜菜碱甲基丙烯酸甲酯(pSBMA)改性后的防污材料膜水化层内的水分子的结构及其动力学性质, 从微观角度解释了聚合物膜具有防污性能的原因. 模拟发现: (1)紧靠聚合物膜形成的水化层是聚合物具有防污性能的关键因素, 该水化层是溶液中的粒子(包括蛋白质分子)与聚合物膜相接触时所要克服的最主要的物理能障; (2)相对PDMS聚合物膜而言, 双离子特性自组装膜(pSBMA)在氢键、静电力的共同作用下, 可以形成空间笼状水分子网结构对水分子具有更强的束缚作用并有效降低水分子的可运动性, 形成的稳定水化层使得pSBMA具有更强的阻碍蛋白质吸附的能力.  相似文献   

12.
通过二次界面聚合法制备了一种新型的聚(酰胺-脲-酰亚胺)反渗透复合膜.将常规二元胺——间苯二胺(MPD)与关键功能单体5-异氰酸酯基-异肽酰氯(ICIC)通过界面聚合得到MPD-ICIC初生态基膜,再与关键功能单体N,N'-二甲基间苯二胺(DMMPD)经二次界面聚合制得聚(酰胺-脲-酰亚胺)反渗透复合膜.采用傅里叶变换红外光谱和X射线光电子能谱分析膜活性层的化学结构,评价膜的分离性能,在此基础上采用分子动力学模拟方法从微观角度分析二次聚合膜的稳定性.  相似文献   

13.
6063铝合金三价铬化学转化膜的制备与电化学性能   总被引:2,自引:0,他引:2  
以硫酸铬钾及磷酸为原料在6063铝合金上制备了三价铬化学转化膜. 采用极化曲线及交流阻抗技术研究了不同条件下三价铬转化膜的电化学性能. 结果表明, 温度为30-40 ℃、沉积时间为9 min、pH值为2.0-3.0、KCr(SO4)2为15-25 g·L-1及H3PO4的浓度为10-20 g·L-1的条件为最优条件. Tafel极化曲线结果表明化学转化膜比基体铝合金具有更正的腐蚀电位(Ecorr)、小孔腐蚀电位(Epit)和更低的腐蚀电流(icorr), 说明化学转化膜具有良好的耐腐蚀性能. 利用交流阻抗谱的数据建立了等效电路模型, 并拟合出了腐蚀参数, 如表面电阻(Rcoat)及电容(Ccoat), 电荷转移电阻(Rct)及双电层电容(Cdl)等. 三价铬化学转化膜的交流阻抗谱结果与极化曲线的电化学测试结果相吻合.  相似文献   

14.
刘新  孙仪琳  李坚  任强  汪称意 《高分子学报》2016,(11):1529-1537
采用电子转移再生催化剂原子转移自由基聚合(ARGET ATRP)制备了端羟基聚丙烯酸丁酯-b-聚甲基丙烯酸甲酯嵌段共聚物(HO-PBA-b-PMMA),在此基础上,与六亚甲基二异氰酸酯三聚体(N3390)反应,合成了多臂聚丙烯酸丁酯-b-聚甲基丙烯酸甲酯嵌段共聚物.通过凝胶渗透色谱(GPC)、核磁共振仪(1H-NMR)、傅里叶变换红外光谱计(FTIR)对聚合物的结构进行了表征,利用原子力显微镜(AFM)观察了其形貌,采用动态热机械分析仪(DMA)和万能拉伸机研究了聚合物的热性能、力学性能及多臂嵌段共聚物对PMMA的增韧性能.结果表明:成功制备了端羟基聚丙烯酸丁酯-b-聚甲基丙烯酸甲酯,以及多臂聚丙烯酸丁酯-b-聚甲基丙烯酸甲酯嵌段共聚物.在异氰酸酯基/羟基(NCO/OH)摩尔比为1.2/1时,制得的多臂嵌段共聚物相对分子质量最大,Mark-Houwink参数α值最小,表明此时三臂嵌段共聚物最多.多臂嵌段聚合物的拉伸强度和断裂伸长率比线型聚合物均有明显提高,且在NCO/OH摩尔比为1.2/1时达到最大,分别为7.6 MPa和73%.多臂嵌段聚合物具有更高的玻璃化转变温度(Tg).通过原子力显微镜(AFM)表明,多臂聚丙烯酸丁酯-b-聚甲基丙烯酸甲酯嵌段共聚物形成了以聚丙烯酸丁酯链段为核,聚甲基丙烯酸甲酯为壳的核壳结构.具有核壳结构的多臂聚丙烯酸丁酯-b-聚甲基丙烯酸甲酯嵌段共聚物对聚甲基丙烯酸甲酯有明显的增韧作用.  相似文献   

15.
郑华靖  蒋亚东  徐建华  杨亚杰 《化学学报》2010,68(16):1661-1667
采用修饰Langmuir-Blodget(LB)膜法以二十烷酸(AA) LB膜为模板, 通过3,4-乙烯二氧噻吩(EDOT)单体在LB膜亲水基团间聚合, 制备了AA/PEDOT复合LB膜. 实验分析表明薄膜具有较好的层状有序结构, 并进一步研究发现EDOT在AA多层膜中的聚合破坏了原有LB膜的有序性, 这与聚合过程对层状结构产生的破坏作用有关; 研究了薄膜导电性能, 发现AA/PEDOT多层膜的电导率随处理时间的变化产生突变, 这与多层膜中导电通道的“渝渗”有关, 在有效导电网络连通后电导率发生了突变. 测试结果还表明AA/PEDOT膜导电性明显优于PEDOT旋涂膜和十八胺-硬脂酸/聚(3,4)乙烯二氧噻吩-聚苯乙烯磺(ODA-SA/PEDOT-PSS)复合膜.  相似文献   

16.
将3-(2-二硫代苯甲酸基丙酰氧基)丙基二甲基甲氧基硅烷化学键合于硅片表面.以甲基丙烯酸甲酯和苯乙烯为单体,在硅片表面进行可逆加成-断裂链转移(RAFT)接枝聚合.X-射线光电子能谱仪证实聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、苯乙烯/甲基丙烯酸甲酯的共聚物(poly(MMA-co-St))都接枝到硅片表面.但3个体系表现出不同的性质,甲基丙烯酸甲酯的RAFT聚合可控性差,分子量比设计分子量大得多,分子量分布指数宽,接枝密度仅为0·03chains/nm2;苯乙烯均聚合的活性/可控性好、分子量分布窄,接枝密度提高到0·21chains/nm2;共聚合体系综合了两个均聚体系的优点,分子量分布较窄,接枝密度最高为0·31chains/nm2,聚合物膜厚随转化率、数均分子量基本呈线性增长.  相似文献   

17.
采用循环伏安法(CV)在316不锈钢(316SS)表面聚合生成聚苯胺/聚吡咯-纳米二氧化硅(PAni/PPySiO_2)共聚复合薄膜.通过电化学工作站、傅里叶变换红外光谱仪(FTIR)、X射线光电子能谱仪(XPS)和扫描电子显微镜(SEM)等考察了聚苯胺(PAni)、聚苯胺/聚吡咯(PAni/PPy)与PAni/PPy-SiO_2薄膜的电化学聚合过程、分子结构和特征形貌;在3.5%(质量分数)Na Cl水溶液中利用Tafel极化曲线和电化学阻抗谱(EIS)分别考察了PAni,PAni/PPy与PAni/PPy-SiO_2薄膜对不锈钢的防腐性能.结果表明,通过电化学法可以在316不锈钢表面生成PAni/PPy-SiO_2共聚复合薄膜;相对于PAni薄膜与PAni/PPy薄膜,PAni/PPy-SiO_2薄膜有着更密实的表面结构,其对不锈钢的保护能力优于PAni/PPy薄膜和PAni薄膜,纳米SiO_2的掺杂通过加强膜层的机械屏蔽作用并抑制腐蚀反应过程中电荷的传递,提高了薄膜的防腐能力.  相似文献   

18.
以FeCl3/ PPh3为催化体系,在无引发剂、溶剂热体系中进行甲基丙烯酸甲酯(MMA)的原子转移自由基聚合(ATRP)反应.考察了反应温度与还原剂对反应的影响.实验结果表明,在溶剂热体系中进行的MMA聚合反应符合"活性"/可控聚合,聚合过程中转化率和分子量随时间的增加而增大,所得聚甲基丙烯酸甲酯分子量分布较窄.  相似文献   

19.
用原位聚合法制备聚丙烯酰胺/蒙脱土(PAM/MMT)纳米复合材料, 通过透射电镜研究了蒙脱土在聚丙烯酰胺基体中的形貌和分布. 结果表明, 蒙脱土以片层结构分布在聚合物基体中. 用超声波分散聚乙烯醇和聚丙烯酰胺-蒙脱土共混铸膜液制得共混膜, 用红外吸收光谱和扫描电镜研究了两者的相互作用和形貌. 考察了共混膜在异丙醇-水混合溶液中的溶胀吸附性能及共混比和蒙脱土含量对膜分离性能的影响, 结果显示, 聚乙烯醇膜中添加适量的蒙脱土纳米粒子可以大大改善膜的分离选择性.  相似文献   

20.
从分子结构设计出发,采用自由基聚合、醚化、酯化、原子转移自由基聚合(ATRP)、可逆加成断裂链转移自由基聚合(RAFT)等方法合成了一系列具有不同分子结构(包括接枝、嵌段、交替、超支化等)和链形态(包括直链、梳状、哑铃状、链球状等)的两亲性共聚物,并对这些聚合物进行了谱学表征和性能测试.将这些两亲性共聚物与聚合物膜材料(包括聚偏氟乙烯、聚氯乙烯、聚砜、聚醚砜、聚醚砜酮等)进行溶液共混,通过相转化法制备共混膜,在成膜热力学和动力学分析的基础上,对共混膜的结构和性能进行调控.研究发现,两亲性共聚物在成膜过程中自发地向膜表面迁移富集,并进行自组装,在膜表面形成两亲性共聚物包膜,显著改善了聚合物多孔膜的亲水性和抗污染性能.此外,两亲性共聚物中的功能基团还可赋予共混膜某些功能特性,如生物相容性、环境响应性(pH、温度敏感性)、酶活性等.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号