首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
选取溴代噻唑和三乙炔基苯为单体,利用聚合反应自下而上构建含噻唑共轭微孔聚合物(NSCMP),通过热解和KOH活化热解NSCMP制备了氮、硫杂原子硬炭(NSHC)和活化NSHC(KNSHC)。利用扫描电子显微镜、能量色散谱、氮气吸附-脱附和恒流充放电等表征2个样品的结构与电化学性能。研究表明KNSHC中N和S的质量分数分别为10.42%和2.23%,KNSHC比表面积高达2 140 m2·g-1。在0.2 A·g-1电流密度下循环500次后KNSHC和NSHC的可逆比容量分别为946.2和493.7 mAh·g-1。KNSHC的优异电化学性能归因于其独特的孔结构和氮、硫杂原子的协同作用。  相似文献   

2.
选取溴代噻唑和三乙炔基苯为单体,利用聚合反应自下而上构建含噻唑共轭微孔聚合物(NSCMP),通过热解和KOH活化热解NSCMP制备了氮、硫杂原子硬炭(NSHC)和活化NSHC(KNSHC)。利用扫描电子显微镜、能量色散谱、氮气吸附-脱附和恒流充放电等表征2个样品的结构与电化学性能。研究表明KNSHC中N和S的质量分数分别为10.42%和2.23%,KNSHC比表面积高达2 140 m2·g-1。在0.2 A·g-1电流密度下循环500次后KNSHC和NSHC的可逆比容量分别为946.2和493.7 mAh·g-1。KNSHC的优异电化学性能归因于其独特的孔结构和氮、硫杂原子的协同作用。  相似文献   

3.
可逆高储锂的锂离子电池炭负极材料的研究进展   总被引:8,自引:0,他引:8  
对近几年所研究的高能可储锂炭材料进行了综述。主要为以下几个方面:石墨的改性、有机裂解炭、低温聚合物裂解炭和其它炭材料。  相似文献   

4.
基于羧甲基纤维素钠制备氮掺杂多孔炭及其电容性能研究   总被引:3,自引:0,他引:3  
以羧甲基纤维素钠(NaCMC)为碳源, 利用直接炭化工艺(无需进一步活化)制备多孔炭材料; 然后, 以CO(NH2)2为氮源, 形成了氮掺杂多孔炭材料. 氮的存在形式包括吡啶N、石墨N和吡咯N. 实验结果表明, 羧甲基纤维素钠与CO(NH2)2之间的配比可以有效控制氮存在形式、含量、样品的比表面积及孔的结构等. 样品的电化学性能测试表明, 氮掺杂后多孔炭材料的超电容性能得到了显著提升. 以carbon-N-1:20为例, 其比表面积可达858 m2·g-1, 远高于未经氮掺杂carbon-blank 的463 m2·g-1, 其质量比电容则由94.0 F·g-1提高到了156.7F·g-1.  相似文献   

5.
本主要研究了炭化温度、升温速率以及碱处理浓度对稻壳制备锂离子电池负极材料结构及充放电性能的影响.通过差-热热重分析曲线(DT-TGA)、元素分析、X射线粉末衍射(XRD)以及电化学性能测试手段对材料进行了表征.结果表明:在最佳实验条件下,材料的首次充电容量为678mA h/g,首次放电容量为239mA h/g,循环10次的容量保持率为86.2%.  相似文献   

6.
杨勇  王言  蓝国钧  李健  李瑛 《化学通报》2016,79(10):905-913
氮掺杂多孔炭材料,不仅具有多孔炭材料的较高的比表面积、丰富的孔结构、良好的稳定性及耐高温耐酸碱性等优点,同时氮原子的引入使材料表现出优异的导电性能及电子传输能力,使得炭材料具有了一定的碱性及催化性能,是目前多相催化及材料领域的一个研究热点。本文综述了氮掺杂多孔炭的制备方法及在多相催化中的应用,并指出了该领域未来研发的重点及应用前景。  相似文献   

7.
本研究以价格低廉、来源广泛的煤沥青作为炭前驱体、尿素作为氮源和模板、氢氧化钠作为活化剂,通过结合模板法与化学活化法成功制备了具有纳米片状结构的氮氧共掺杂的多孔炭材料。多孔炭电极在0.05 A/g时最大比容量高达255.5 m A·h/g,在电流密度为1 A/g时,放电比容量达到78 m A·h/g。经过12000次循环,容量保持率仍有72.4%,并且能量密度最高达到99.6 W·h/kg,展现出作为正极材料的巨大潜力。以煤沥青为原料制备的氮氧共掺杂多孔炭材料作为锌离子混合超级电容器的正极材料表现出了优异的电化学性能。  相似文献   

8.
采用高压静电纺丝结合高温煅烧的方法制备了SnO2多孔纳米纤维, 通过调节前驱体浓度获得具有高孔隙率的疏散型纤维, 利用SEM, TGA, XRD和电化学测试等手段对材料进行了表征. 结果表明, SnO2多孔纳米纤维具有较好的电化学性质, 作为锂离子电池负极材料的初始可逆容量为717 mA·h/g, 20次循环后电池的充放电容量保持在320 mA·h/g左右.  相似文献   

9.
采用化学镀方法制备三维多孔铜.以其作为集流体,借助电沉积制备三维多孔Sn-Co合金电极.X-射线衍射(XRD),扫描电镜(SEM)分析表明,以多孔铜为集流体制备的SnCo合金电极主要存在CoSn2相和纯Sn相,为三维多孔结构.充放电结果显示,三维结构SnCo合金电极比平面铜集流体上镀得的SnCo合金电极表现出更优越的充放电性能.前者的首次放电(嵌锂)容量为636.3mAh/g,充电(脱锂)容量为528.7mAh/g,首次库仑效率为83.1%,70周后容量为529.5mAh·g-1,保持率为82.6%.此外,还应用电化学阻抗初步研究了三维Sn-Co合金电极在充放电过程发生的嵌脱锂过程.  相似文献   

10.
采用多步恒电流沉积技术, 在铜箔上电沉积制备了多孔锂-硅薄膜电极(LSF). 用X射线衍射(XRD)和扫描电镜(SEM)测试手段研究了该电极的结构和表面形貌. 作为锂离子电池负极材料, 电化学测试结果表明锂-硅薄膜电极具有较好的循环稳定性, 通过改变电沉积条件, 可有效调控该电极的嵌脱锂容量及首次循环效率. 譬如, 在0.5 mol·L-1四氯化硅+0.7 mo·L-1高氯酸锂的碳酸丙烯酯电解液中, 首先以-3.82 mA·cm-2的恒定电流密度沉积600 s, 再将电流密度恒定为-1.27 mA·cm-2, 继续电沉积7200 s, 制得锂-硅薄膜电极(LSF-3), 该电极以12.7 μA·cm-2的电流密度预循环2次, 其首次循环库仑效率高达97.1%. 预循环2次后, 电流密度增加到25.5 μA·cm-2, 此时,锂-硅薄膜电极充电质量比容量和面积比容量分别为1410 mAh·g-1及240.6 μAh·cm-2; 50次循环后充电比容量为179 μAh·cm-2 (1049 mAh·g-1), 容量保持率为74.4%. 锂-硅薄膜电极中的活性锂组分可补偿首次循环时不可逆容量损失, 同时薄膜电极中的多孔结构可缓解电极材料的体积效应并改善其循环性能.  相似文献   

11.
Ginkgo leave, a naturally abundant resource, has been successfully employed as the raw material to prepare nitrogen doped porous carbon (NDPC) materials. The preparation of the porous carbon does not involve assistance of any activation or template technique. The as‐obtained NDPC shows favorable features for electrochemical energy storage, which can not only provide multiple sites for the storage and insertion of Li ions, but also facilitate rapid mass transport of electrons and Li ions. As a result, the NDPC when evaluated as an anode material for lithium ion batteries delivers high reversible capacity (505 mAh·g?1 at 0.1 C), excellent rate capability (190 mAh·g?1 at 10 C). These favorable properties suggest that the NDPC can be a promising anode material for lithium ion batteries (LIBs).  相似文献   

12.
多孔碳材料由于高的比表面积、优异的电子传导率、良好的化学稳定性等优点在超级电容器电极材料领域被广泛研究。 碳材料的组成及表面孔结构直接影响其电化学性能,为进一步提高碳材料的电容性能,本文首次以聚多巴胺球为前体,KOH为活化剂,通过高温碳化成功制备了良好电化学性能的氮掺杂多孔碳材料。 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、 X射线粉末衍射(XRD)、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)和Raman光谱等对所制备的氮掺杂多孔碳材料进行了形貌及结构组成的表征。 在6 mol/L KOH电解液中, 采用循环伏安、恒电流充放电对多孔碳材料的电化学性能进行了研究。 结果表明,由于双电层电容和赝电容的协同作用,在电流密度为1 A/g时,材料的比电容可达269 F/g,充放电循环1000圈后电容仍可保留初始值的93.5%。  相似文献   

13.
采用碳布(CC)为柔性基底,通过水热法制备了MnO2/CC及N掺杂MnO2/CC无黏结剂负极材料,借助X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、比表面积测试和恒电流充放电对材料进行了结构表征及电化学性能测试。结果表明N掺杂MnO2/CC具有良好的倍率性能和循环稳定性。在0.1 A·g-1的电流密度下,其首次充电比容量为948.8 mAh·g-1,经过不同倍率测试后电流密度恢复至0.1 A·g-1时仍然保持有907.9 mAh·g-1的可逆比容量,容量保持率为95.7%。在1 A·g-1的大电流密度下,其首次充电比容量为640.3 mAh·g-1,循环100次后仍然保持有529.9 mAh·g-1的可逆比容量,容量保持率为82.8%,可逆比容量远高于商用MnO2。  相似文献   

14.
三维多孔金属不仅可容纳电极在储锂过程中的体积变化,且为锂离子提供快速传输通道,因此被广泛用做锂离子电池集流体,以提升其循环稳定性和高倍率容量.NiO作为锂离子电池负极具有高理论比容量而备受关注,但其电子导电性差和充放电过程中的巨大体积变化造成其循环寿命短和高倍率容量低.此外,NiO首次放电(嵌锂)产物Ni0和Li2O不能在充电(脱锂)过程中完全反应造成首次不可逆容量大,阻碍了其商业化应用.本工作采用简单、易规模化的化学镀法制备出具有三维贯穿孔的多孔铜(孔径≈5 μm),并在其孔壁电沉积获得NiO@三维多孔铜电极.由于三维多孔铜集流体可容纳NiO储锂过程中的体积变化;为锂离子提供快速传输通道,同时其高比表面积增大了Ni0和Li2O的反应活性点,因此该电极显示出优异的高倍率容量和高首次库伦效率.该电极在200 mA·g-1电流密度下,首次放电(嵌锂)和充电(脱锂)容量分别为1522.3和1230.2 mAh·g-1,首次库伦效率达到80.8%;在高电流密度20 A·g-1下显示578.1 mAh·g-1容量.以NiO@三维多孔铜为负极,LiNi1/3Co1/3Mn1/3O2为正极组装成全电池,首次充电和放电容量分别为1514和1060 mAh·g-1(基于NiO电极,电流密度0.2 A·g-1),首次库伦效率为70%;1.0 A·g-1电流密度下,首次放电比容量为873 mAh·g-1,100次循环后保持709 mAh·g-1,保持率为81%;10 A·g-1电流密度下容量保持530.6 mAh·g-1.该工作将为过渡金属氧化物储锂性能提升提供新途径.  相似文献   

15.
以Li13Si4和SiCl4为原料,通过简单的机械球磨法合成多孔硅/碳复合材料,通过控制Li13Si4颗粒的尺寸可以有效调节产物的比表面积。分别研究了包覆碳含量、多孔硅/SuperP(导电碳)比表面积以及极片活性物质负载量对多孔硅/碳复合材料电化学性能的影响。结果表明:多孔硅/SuperP比表面积为100.9m2·g-1,化学气相沉积(CVD)包覆碳含量为25.3wt%(约6nm厚)的复合材料具有最高的电化学活性,在300mA·g-1的电流密度下,循环可逆比容量达到1900mAh·g-1,50次循环后容量仅衰减7.6%。  相似文献   

16.
以Li13Si4和SiCl4为原料,通过简单的机械球磨法合成多孔硅/碳复合材料,通过控制Li13Si4颗粒的尺寸可以有效调节产物的比表面积。分别研究了包覆碳含量、多孔硅/Super P(导电碳)比表面积以及极片活性物质负载量对多孔硅/碳复合材料电化学性能的影响。结果表明:多孔硅/Super P比表面积为100.9 m2·g-1,化学气相沉积(CVD)包覆碳含量为25.3wt%(约6 nm厚)的复合材料具有最高的电化学活性,在300 mA·g-1的电流密度下,循环可逆比容量达到1 900 mAh·g-1,50次循环后容量仅衰减7.6%。  相似文献   

17.
TiO2 nanoflakes were prepared by hydrothermal precipitation method using Ti(SO4)2 as titanium source and NaOH solution as alkaline medium. Their surface morphology, grain size measured after high temperature calcination and effect on the electrochemical performance of Li ion battery were discussed. TiO2 nanoflakes were characterizated by means of transmission electron microscopy(TEM), X-ray powder diffraction(XRD), N2 adsorption-desorption isothermal assay, cyclic voltammetry(CV) and cycle performance test. The result of electrochemical performance test shows that the prepared TiO2 nanoflakes have high discharge specific capacity and good cycle performance. Discharge specific capacity for the first circle at the discharge rate of 0.1 C is 261.5 mA·h·g-1. After 90 cycles, the discharge capacity reduces to 172.2 mA·h·g-1.  相似文献   

18.
以生物质百香果皮为碳源,KHCO3为活化剂,采用同步活化碳化方法制备原位氮掺杂的分级多孔碳材料,将其与单质硫复合制得多孔碳/硫正极材料。通过X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征技术对制备材料的物相组成、微观形貌、比表面积及孔结构进行研究分析。同时,利用紫外可见吸收光谱研究了多孔碳对多硫化物的吸附作用,用恒电流充放电测试了不同硫含量(60%~80%)的多孔碳/硫复合正极材料的电化学性能。结果表明,制得的多孔碳材料为无定型,具有1 093 m2·g-1的高比表面积和0.63 cm3·g-1的孔容;丰富的多孔结构和原位氮掺杂对多硫化物的物理化学协同吸附作用,有效降低了锂硫电池的“穿梭效应”,提高了电池的放电比容量和循环性能。硫含量为60%的多孔碳/硫复合材料,在0.05C和0.2C倍率下可释放1 057.7和763.4 mAh·g-1的高初始放电比容量,在1C的高倍率下循环300次后的保持率为75%。  相似文献   

19.
新型多孔碳纳米片/碳纳米管(PC/CNT)材料表现出丰富的分级孔隙结构,具有较高的氧化锡(SnO2)负载量.通过PC和CNT交联形成的三维结构能够有效地提高锂离子传输速率和电子的传导.此外,在电极中掺杂的氟化锂(LiF)不仅能够降低SnO2-PC/CNT-LiF电极的电荷转移电阻,而且还能补充SEI膜形成时消耗的Li+...  相似文献   

20.
新型多孔碳纳米片/碳纳米管(PC/CNT)材料表现出丰富的分级孔隙结构,具有较高的氧化锡(SnO2)负载量。通过PC和CNT交联形成的三维结构能够有效地提高锂离子传输速率和电子的传导。此外,在电极中掺杂的氟化锂(LiF)不仅能够降低SnO2-PC/CNT-LiF电极的电荷转移电阻,而且还能补充SEI膜形成时消耗的Li+,降低不可逆容量,增强SEI膜的稳定性。研究表明,SnO2-PC/CNT-LiF电极在电流密度为100 mA·g-1时,首次可逆比容量达到1 642.98 mAh·g-1,活性物质的利用率高达90.12%,循环100次后,放电比容量仍然达到745.11 mAh·g-1,且库仑效率仍然保持在95.1%以上,显示出优异的倍率和循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号