首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
本文采用阳极氧化法及循环伏安法,在TiO_2纳米管阵列上成功沉积了MoS_2纳米粒子,得到了MoS_2/TiO_2复合纳米材料。与未修饰的TiO_2纳米管阵列相比,复合MoS_2/TiO_2纳米管阵列的光电性能以及光催化性能都有明显提升。通过光电流实验结果分析,当沉积MoS_2圈数为30圈时,MoS_2/TiO_2复合纳米材料的光电流强度最强(0.35 mA/cm~2),是未修饰的TiO_2光电流强度的3.88倍(0.09mA/cm2)。通过光催化降解对比实验发现,MoS_2/TiO_2复合纳米材料对4-硝基酚的光催化降解效果要明显优于未修饰的TiO_2。复合MoS_2/TiO_2纳米管阵列增强的光电性能及光催化活性应该是归因于复合材料增强的可见光吸收能力,以及更快的电子和空穴迁移速度。  相似文献   

2.
通过水解法制备TiO_2纳米颗粒,与经过超声处理后的MoS_2片层纳米材料复合制备MoS_2/TiO_2纳米催化剂,考察不同MoS_2负载量对其光催化降解苯酚效率及路径的影响。XRD、SEM、EDS、FT-IR和UV-vis DRS等表征结果表明,复合催化剂主要由锐钛矿型TiO_2和MoS_2组成;剥离后的MoS_2呈现薄片层状结构,均匀地分散在TiO_2纳米颗粒当中。光催化降解苯酚性能测试结果显示,对于MoS_2/TiO_2催化剂,MoS_2负载量的提高有利于光催化降解苯酚效率的提高;当MoS_2负载量为27%时,复合M o S2/TiO_2纳米颗粒的光催化性能最佳,反应80 min后可将苯酚完全降解。通过对苯酚降解过程中生成中间产物跟踪发现,MoS_2负载量的提高有利于促进中间产物苯醌、对苯二酚以及邻苯二酚的生成,进而提升了MoS_2/TiO_2复合材料的光催化性能。  相似文献   

3.
为了改善TiO_2光催化剂光生电子-空穴对复合率高、太阳光利用率低的缺陷,采用溶剂热法控制氧化剥离的少层Ti_3C_2MXene(DL-Ti_3C_2),制备TiO_2/DL-Ti_3C_2复合光催化剂,并通过降解罗丹明B溶液,研究其光催化性能。结果表明,TiO_2/DL-Ti_3C_2复合光催化剂能有效吸收可见光,且光催化性能明显优于DL-Ti_3C_2和P25。当溶剂热氧化温度为160℃时,复合材料具有最佳的光催化性能。当氧化温度过低时,催化剂中形成的TiO_2量不足,产生的光生电子-空穴对数量较少,导致催化剂性能较差;当氧化温度过高时,DL-Ti_3C_2减少,降低了材料导电性,光生电子-空穴对复合效率高,导致催化剂性能变差。因此,通过改变DL-Ti_3C_2的氧化温度,可以调控TiO_2/DL-Ti_3C_2复合材料中TiO_2和DL-Ti_3C_2的相对含量,使二者产生协同作用提高复合光催化剂的可见光催化活性。  相似文献   

4.
开发高效、稳定的半导体光催化材料是太阳能光催化制氢领域的研究热点,ZnIn_2S_4因其合适的能隙、带边电势位置以及稳定、低毒等优点而受到广泛关注.但在实际应用中,单纯的ZnIn_2S_4光催化制氢活性仍较低,主要原因是ZnIn_2S_4受激产生光生电子-空穴对后,载流子的传输、分离效果不理想,易在体相或表面复合;再者是单一的ZnIn_2S_4表面缺少催化反应产氢的活性位点.为提高催化活性,通常在催化剂的表面负载一定量的贵金属作为助催化剂,但由于贵金属成本高和稀缺性,限制了其实际的应用.因此,开发低成本、储量丰富、高效的非贵金属助催化剂来增强ZnIn_2S_4的光催化制氢活性具有显著意义.最近研究表明,具有层状结构的MoS_2可被作为一种非贵金属助催化剂应用于光催化制氢,且已取得了优异的光催化制氢效果.理论计算得出,暴露在MoS_2边缘的不饱和S原子具有与质子H+很强的键合作用,从而使其能够作为活性位点便利地产生氢气.因而将MoS_2负载于ZnIn_2S_4的表面,可进一步提高ZnIn_2S_4的光催化制氢活性.本文采用二步水热法制备了MoS_2负载于ZnIn_2S_4微球表面的MoS_2/ZnIn_2S_4复合光催化剂.采用X-射线衍射、场发射扫描电子显微镜、透射电子显微镜、X射线光电子能谱、Raman光谱、紫外-可见漫反射吸收光谱、氮气吸附-脱附测试和荧光光谱等技术对所得样品进行了表征.以乳酸作为牺牲试剂考察了MoS_2负载量对光催化制氢活性的影响.结果显示,当MoS_2含量为1 wt%时,MoS_2/ZnIn_2S_4复合光催化剂的光催化产氢活性最高,达343μmol/h,是单纯ZnIn_2S_4的14.9倍.此外,对1 wt%MoS_2/ZnIn_2S_4样品进行光催化制氢的长效循环测试表明,该样品在可见光下能够保持稳定、有效的光催化制氢性能.据此提出一个可能的增强光催化制氢活性机理:适量的MoS_2可以促进ZnIn_2S_4表面光生载流子的有效传输和分离,从而延长载流子的寿命.  相似文献   

5.
光解水制氢技术是解决能源环境问题的重要手段.本研究通过负载非贵金属Cu于TiO_2表面,提高光催化活性,并与CdS进行复合从而获得高活性的可见光催化材料.利用X射线衍射、紫外-可见漫反射和高分辨透射电镜手段表征了Cu的物种、催化材料的光吸收性能及复合物的形貌和复合状态.活性测试显示Cu的负载可以显著提高TiO_2的光催化活性,当Cu负载量为2%(质量分数)时光催化活性产氢最高,为未负载的29倍.Cu/TiO_2与CdS复合后,CdS的电子可以快速的传递到TiO_2表面的Cu上,从而达到电子和空穴的分离,提高了CdS在可见光下的产氢活性.  相似文献   

6.
首先采用相分离的水解-溶剂热法制备了Bi2O3纳米粒子,然后利用简单的湿化学法在Bi2O3表面负载不同比例的TiO2纳米颗粒,进而得到TiO2/Bi2O3纳米复合体。通过气氛调控的表面光电压谱(SPS)等测试表明,表面负载适量的TiO2后能够提高Bi2O3光生电荷分离。可见光催化产氢和降解污染物测试结果进一步证明,表面负载适量的TiO2后可显著提高其可见光催化活性,其中Ti/Bi摩尔比为7%时具有最高的光催化活性。这主要归因于TiO2具有较为合适的导带能级位置,可以接收Bi2O3在可见光激发下所产生的高能级电子,从而抑制光生电子-空穴对复合,并且维持了高能级电子较高的还原能力。  相似文献   

7.
采用研磨-煅烧技术制备不同g-C_3N_4含量的g-C_3N_4/TiO_2复合粉末催化剂,以模拟太阳光光催化降解气相间二甲苯实验评价催化剂活性.结果表明:当g-C_3N_4含量为60%时,g-C_3N_4/TiO_2-60的降解效果最佳.以此为代表,采用溶胶-凝胶-浸渍-提拉方法 ,制备光纤负载g-C_3N_4/TiO_2薄膜光催化材料,应用于气相间二甲苯的降解.通过X射线粉末衍射(XRD)、紫外可见漫反射(UV-Vis/DRS)及高分辨透射电镜(TEM)对催化剂进行表征.采用光电化学实验、自由基捕获实验探究其光催化机理.结果表明:模拟太阳光光照120min后,光纤负载g-C_3N_4/TiO_2-60薄膜光催化材料对气相间二甲苯的降解率为94%,经过3次循环使用后降解活性无明显变化.光在光纤中的有效传播、光生电子和空穴的快速产生、迁移以及反应体系中形成的·O2-,·OH和hVB+3种活性物种是光纤负载薄膜催化剂实现高效降解气相间二甲苯的原因.  相似文献   

8.
以电纺TiO_2纳米纤维为基质,采用溶剂热法制备了稀土Pr掺杂Bi_2MoO_6/TiO_2复合纳米纤维,利用X射线衍射仪、扫描电子显微镜、透射电子显微镜、紫外-可见-近红外分光光度计和荧光光谱仪等对不同样品的物相、形貌和光学性能等进行表征,以甲基橙为模拟有机污染物,考察了样品的光催化性能.结果表明,在复合样品中,Pr~(3+)进入Bi_2MoO_6晶格,部分取代Bi~(3+)形成施主能级,导致能级带隙变窄,不仅有利于提高样品的可见光催化活性,抑制光生电子-空穴对复合,而且还提高了Bi_2MoO_6/TiO_2的光催化活性和稳定性.当Pr的掺杂量为3%(摩尔分数)时,光催化降解甲基橙的效果最佳,可见光照射180 min时降解率达到93.8%,比纯Bi_2MoO_6/TiO_2的降解率有明显提高.  相似文献   

9.
光催化技术因可以利用太阳能、反应条件温和、无二次污染等优点,有望成为解决石化行业废水、废气污染物的理想污染治理技术。为了充分发挥石墨烯、MoS_2等二维层状材料在结构上的优势,我们采用等离子体技术原位还原单层氧化石墨烯和四硫代钼酸铵,制备石墨烯/MoS_2/CaIn_2S_4复合光催化剂。利用XRD、SEM、TEM、BET、Raman、XPS等技术对复合光催化剂的结构、形貌、比表面积、电子结构等进行了表征,并研究了它们在可见光下光催化降解气相邻二甲苯和液相苯酚的性能。结果表明,在等离子体制备过程中,MoS_2优先负载到CaIn_2S_4表面,同时MoS_2和CaIn_2S_4又负载到薄层石墨烯的纳米片上。这种独特的结构不仅可以提高光催化剂的比表面积,同时还可以有效抑制光生载流子的复合、提升光生电荷的寿命,因此MoS_2和石墨烯的协同作用可以大幅增强CaIn_2S_4的光催化性能。当MoS_2和石墨烯的负载量分别达到5%和3%时,得到的石墨烯/MoS_2/CaIn_2S_4的光催化性能最强,90 min内可以将200 ppm V的邻二甲苯降解97.7%,表观一级反应速率常数为0.004167 min~(-1),分别是相应的石墨烯/CaIn_2S_4、MoS_2/CaIn_2S_4和CaIn_2S_4的2.5、5.4和7.1倍; 120 min可以将20 mg·L~(-1)的苯酚降解84.8%,表观一级反应速率常数为0.01542 min~(-1),分别是相应的石墨烯/CaIn_2S_4、MoS_2/CaIn_2S_4和CaIn_2S_4的2.4、3.8和6.0倍。  相似文献   

10.
自从1972年Fujishima和Honda发现TiO_2光电催化分解水产氢以来,半导体光催化分解水产氢技术被认为是解决能源危机和环境污染问题最有效的策略之一.然而,由于TiO_2的可见光吸收能力差、活性低、价格高等问题限制了其实际应用,因此寻求和发展高效的可见光催化剂具有重要意义.CdS半导体材料具有合适的带隙及导带位置,可以有效吸收可见光产生电子并将H~+还原生成H_2,是目前公认的较好的可见光催化产氢材料之一.然而光催化过程中Cd S材料较快的电子-空穴复合速度极大降低了其效率,如何促进光催化过程中电子-空穴对的分离成为研究重点.研究表明,采用负载助催化剂、构筑异质结、表面修饰、金属/非金属元素掺杂等技术可明显提高Cd S的光催化产氢性能,其中发展非贵金属助催化剂引起了广泛兴趣.近年有文献报道过渡金属硫化合物Mo S2用于光催化助催化剂,可以明显提高光催化性能.目前已制备出具有不同形貌的MoS_2/Cd S异质材料如纳米球、纳米棒、纳米纤维等,但多数Mo S2/CdS异质材料的制备采用两步法或多步法,制备工艺复杂,易引入杂质,阻碍了其实际应用.因此,发展简单温和的一步法制备具有新颖形貌的MoS_2/Cd S异质材料具有重要意义.本文采用简单的一步水热法制备了一种新颖的柳枝状MoS_2/Cd S异质材料.采用X射线衍射、场发射扫描电子显微镜、透射电子显微镜、X射线光电子能谱、紫外-可见漫反射吸收光谱和氮气吸附-脱附测试对所得样品进行了表征.结果表明,制备的柳枝状MoS_2/CdS异质材料具有核壳结构,两者之间形成紧密的异质结.光催化性能测试表明,制备的MoS_2/Cd S异质材料相比纯相Cd S产氢性能明显提高,优化后的MoS_2/Cd S异质材料(MoS_2/CdS摩尔比为5:100)的产氢性能是纯Cd S的28倍.通过紫外-可见漫反射光谱、荧光光谱分析、光电流、EIS阻抗谱及莫特肖特基曲线测试发现, CdS与MoS_2之间致密的异质核壳结构有助于光生载流子的迁移与分离,从而明显提高光催化活性.  相似文献   

11.
光催化技术在常温下能够直接利用太阳能来驱动反应,已成为一种理想的环境污染治理和洁净能源生产技术.但是比较多的限制条件阻碍了光催化发展和实际应用,如何有效解决这些限制因素成为光催化技术走向工业化应用必须解决的问题.目前光催化材料研究存在的问题主要包括:(1)研究工作主要集中的粉体催化剂存在分离困难、难以重复利用的缺点,开发与基底结合牢固的薄膜材料是十分必要的;(2)光催化材料本身的光响应范围影响光催化材料的应用,拓宽催化剂材料的光吸收范围是亟待解决的;(3)光生电子和空穴的复合问题是影响光催化剂催化活性的主要因素之一,很多方法被用来阻止电子-空穴对的复合,如:金属和非金属的掺杂、贵金属修饰、异质结、新型催化剂结构的设计等,如何设计促进催化剂光生电子和空穴的分离成为光催化技术应用的重要问题.介孔单晶TiO_2通过自组装的方法被制备,成为TiO_2的一种新结构材料.介孔单晶TiO_2结合了介孔材料的大比表面积、单晶材料的电荷传输快等优点,对于光催化性能有了很大的提高.目前介孔单晶TiO_2主要是以粉体的形式存在,但是粉体TiO_2的应用受到多方面的影响,如:难回收不易重复利用,与电催化结合难,不能借助电催化提高电荷分离效率等.TiO_2薄膜能够解决粉体的不足,近年来,TiO_2光催化薄膜得到广泛的研究,TiO_2薄膜的制备方法很多,主要有液相制备方法、物理气相沉积法、化学气相沉积法、电化学方法、溅射法等.TiO_2薄膜主要是以纳米颗粒的形式沉积在基底上,并且多为多晶和无定形.而对于介孔单晶TiO_2薄膜的制备和研究还没有报道.我们通过直接焙烧一步法制备了介孔单晶TiO_2薄膜,并对TiO_2薄膜的生长情况、表面结构、TiO_2晶相和晶体完整程度的变化对性能的影响进行了研究.通过调变Ti与F的比例和煅烧温度,研究不同的制备条件对其性能的影响,从而制备高活性TiO_2薄膜.为了进一步提高介孔单晶TiO_2薄膜的活性和拓展其吸收光谱范围,使用高温热解自组装技术一步法制备了贵金属Au负载的介孔单价TiO_2薄膜,Au纳米颗粒跟TiO_2有较好的结合度.在可见光照射下,Au/TiO_2异质结构中Au表面由等离子体共振效应产生的活泼电子会注入TiO_2导带,使光生电子和空穴得到分离;同时Au具有特殊的可见光等离子体共振效应能显著改善TiO_2类宽带隙半导体的可见光响应性能.实验用还原Cr(VI)作为探针反应,考察不同Au含量对光催化性能的影响.  相似文献   

12.
通过沉积法将光活性AgBr半导体负载到介孔TiO_2-SiO_2载体上合成了新型的AgBr/TiO_2-SiO_2复合光催化剂.采用X射线衍射仪、高分辨透射电镜、紫外-可见吸收光谱仪等分析了AgBr/TiO_2-SiO_2复合光催化剂的结构和光谱性质;并采用BET法测定了样品的比表面积和孔分布.结果表明,介孔TiO_2-SiO_2载体的比表面积为135.5m2/g,平均孔径约为3.8nm,AgBr的负载可以有效地将AgBr/TiO_2-SiO_2复合光催化剂的吸收光谱从紫外光区扩展到可见光区,且AgBr和TiO_2形成了异质结结构,强化了AgBr与介孔TiO_2-SiO_2载体的协同作用.以罗丹明B作为探针分子,评价了AgBr负载量对复合光催化剂可见光催化活性的影响.结果发现,当AgBr∶TiO_2=0.1,0.2,0.3和0.4(物质的量之比,下同)时,复合光催化剂的光催化反应速率常数分别为0.008 5、0.028 6、0.024 6和0.019 3min-1,活性先增加后减小,当AgBr∶TiO_2=0.2时,复合光催化剂表现出最高的光催化活性,并且在5次循环测试中均表现出较高的光催化活性.  相似文献   

13.
马占营 《分子催化》2016,30(6):575-582
采用共沉淀法制备了不同Ti/Bi摩尔比的TiO_2/Bi_2WO_6纳米异质结可见光光催化剂.采用XRD、HR-TEM、XPS及UV-vis DRS测试技术对样品的晶相结构、微观形貌、组成及吸光性能等进行了表征分析.以MB模拟环境污染物,考察了TiO_2/Bi_2WO_6纳米异质结的可见光光催化活性.结果表明,当热处理温度为700℃,n(Ti)∶n(Bi)的比值为1∶5.4,可见光照射180 min时,TiO_2/Bi_2WO_6纳米异质结对MB的降解率达80.0%,是纯Bi_2WO_6的12倍.光催化活性的提高可归因于TiO_2与Bi_2WO_6复合后可以产生能带交叠效应,从而促进光生电子-空穴对的有效分离.  相似文献   

14.
TiO_2基光催化剂迈向实际应用的关键在于更加有效地分离电荷和拓宽光吸收范围至可见光区域.通过担载助剂促进光生电荷分离以及掺杂调控能带、提高可见光吸收是实现高性能光催化剂的两个重要途径.在众多助剂中,廉价、无毒且催化性能优异的过渡金属氧化物(如Co-,Ni-,Cu-和Fe-氧化物)助剂在光催化降解污染物、水分解、CO_2还原等领域尤其引人关注.而氧缺陷作为氧化物的固有缺陷,可实现TiO_2的能带调控,提升可见光吸收性能.其中,常见的缺氧缺陷是通过导带边调控来拓宽可见光吸收范围,但其光生电子还原能力降低.因TiO_2价带空穴具有足够强的氧化能力,本文拟通过在TiO_2中引入富氧缺陷调控价带边及担载电子转移助催化剂的途径研制高效可见响应型光催化剂.本文利用超声喷雾热解过氧钛酸和湿化学浸渍法制备了Cu_xO负载富氧型TiO_2微球.采用扫描电子显微镜(SEM),透射电子显微镜(TEM),N_2吸附-脱附等温曲线,X射线衍射(XRD),X射线光电子能谱(XPS),紫外可见漫反射光谱(UV-Vis-DRS)等手段对Cu_xO负载富氧型TiO_2微球的结构特征和光谱吸收性质进行系统研究.SEM,TEM和N2吸附/脱附等温曲线结果表明,Cu_xO负载富氧型TiO_2微球是纳米颗粒紧凑堆叠的介孔微球,直径为200–2000 nm,Cu元素高度均匀分散于微球上.XRD和XPS分析表明,富氧缺陷TiO_2微球相比参照TiO_2微球具有更大的晶格参数,同时晶体中具有大量的过氧物种(Ti-O-O),证明了过氧缺陷的存在.UV-Vis-DRS和XPS的价带谱验证,富氧缺陷使得TiO_2价带顶上移,提高了可见光吸收性能.鲁米诺化学发光(CL)探针实验进一步证明,表面负载的Cu_xO助剂将表面吸附氧高效还原为活性氧物种(O2·–和H_2O_2),提高了光生电子利用率.因此,Cu_xO负载富氧型TiO_2微球表现出更快的可见光催化降解乙醛速率,分别为富氧型TiO_2、非富氧型TiO_2和Cu_xO-TiO_2的8.6、13.0和11.0倍.并且,Cu_xO负载富氧型TiO_2微球在可见光催化降解乙醛的五次循环实验中,活性基本保持不变.Cu_xO负载富氧型TiO_2微球在模拟太阳光和UV光辐照下光催化降解乙醛速率相比富氧型TiO_2微球也大幅提升,分别提升4.6和2.7倍.Cu_xO负载富氧型TiO_2微球光催化性能增强归因于富氧缺陷和Cu_xO电子转移助催化剂的协同作用.其中,富氧缺陷使得TiO_2价带边上移,拓宽可见光吸收范围,Cu_xO电子转移助剂引入界面电荷转移和多电子氧还原过程,加速光生电子利用率,促进光生电荷分离.该策略也为开发其他高效异质结光催化剂提供参考.  相似文献   

15.
太阳能光催化技术广泛应用于处理环境污水中.Z型光催化剂体系具有较强的氧化还原能力,降低半导体的带隙,且使导带更负,价带更正,有效拓宽光生电子-空穴空间距离,抑制其复合,大大提高了光催化剂的催化性能,因此,构筑直接的Z型光催化体系已成为光催化领域的研究热点之一.TiO_2具有较好的光催化性能和良好的化学稳定性,但其禁带较宽,只能被太阳光中约占4%的紫外光激发,对太阳光中约占50%的可见光不响应,且光生电子-空穴易复合.g-C_3N_4是非金属光催化剂,具有较好的光催化活性,可见光吸收非常强,但比表面积较小,光生电子-空穴易复合.还原氧化石墨烯(RGO)具有大的比表面积和优异的传输载流子能力,可显著提高光催化剂的比表面积,同时降低电子空穴复合效率,从而在一定程度上改善光催化剂性能.大量研究证实, TiO_2/g-C_3N_4/RGO三元异质结的光催化性能明显优于单组份TiO_2, g-C_3N_4和二元TiO_2/g-C_3N_4光催化剂,但现有制备工艺复杂且耗时,因此,简易地构筑具有高光催化性能的Z型TiO_2/g-C_3N_4/RGO三元异质结仍具有挑战性.本文采用简易的直接电纺法构筑了高光催化活性的Z型TiO_2/g-C_3N_4/RGO三元异质结光催化剂,通过调节尿素的用量成功制备了一系列不同形貌的TiO_2/g-C_3N_4/RGO三元异质结.并采用X-射线衍射、红外光谱、拉曼光谱、X射线光电子能谱、扫描电子显微镜、透射电子显微镜、紫外-可见漫反射吸收光谱、氮气吸附-脱附测试、光电化学测试和荧光光谱等技术对所制备样品的晶型、组成、形貌、光捕获能力、载流子分离能力、比表面积、光电流、阻抗、光降解性能以及羟基自由基的生成进行系统性测试.以罗丹明B为目标探针分子,考察了模拟太阳光下所制备的光催化剂的光催化活性,结果表明,尿素添加量为0.6g时,电纺构筑的TiO_2/g-C_3N_4/RGO三元异质结在60min具有99.1%的光催化降解效率,显著优于纯TiO_2, g-C_3N_4,二元TiO_2/g-C_3N_4以及制备的其它TiO_2/g-C_3N_4/RGO三元异质结光催化剂.基于光电化学测试、活性物种淬灭实验和荧光光谱分析测试羟基自由基等分析结果,提出了一个合理的Z型增强光催化活性机理.  相似文献   

16.
以钛粉、钽粉为原料,炭黑作为反应性模板,通过熔盐法在炭黑表面原位生长了TaTiC_2纳米碳化物涂层,并以所得TaTiC_2/C复合物为碳化物前驱体,再经可控氧化制备出中空Ta_2O_5/TiO_2复合光催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见(UV-Vis)漫反射(DRS)及N2物理吸附等手段对所制备的光催化剂进行形貌、显微结构及孔结构表征。以高压汞灯为紫外光源,以亚甲基蓝为目标降解物,通过光催化降解实验评价中空Ta_2O_5/TiO_2复合光催化剂的光催化活性。结果表明,熔盐法生长碳化物涂层厚度均匀(20~30 nm),碳化物主要以TaTiC_2晶相存在且具有纳米级的颗粒尺寸。中空Ta_2O_5/TiO_2复合光催化剂同时具有200 nm左右的中空大孔结构及壳层10 nm左右的介孔结构。中空大孔和介孔的存在提高了所制备催化剂对亚甲基蓝的吸附能力。此外,TiO_2与Ta2O5通过电子能带结构的耦合,有效提高了光生电子和空穴的分离效率,从而显著提高了光催化活性。nTi∶nTa=2.5∶1.5时,相应的中空Ta_2O_5/TiO_2复合光催化剂表现出最佳的光催化活性,对亚甲基蓝的紫外光催化降解率高达97%。  相似文献   

17.
纳米二氧化钛具有制备简单、成本低、化学稳定性好及光响应度高等诸多优势,因而广泛应用于光催化及太阳能转化等诸多领域中.然而,传统TiO_2纳米材料受限于较高光电子空穴复合率,导致其光催化活性及光电转化效率较低.为解决这一问题,研究者采用多种方法用以改善纳米TiO_2的结构,包括化学掺杂、半导体材料插层、碳材料杂化等;另一方面则关注材料结构的设计,例如将合成的纳米材料进一步加工为多孔薄膜,以增大材料比表面积及器件稳定性,以增强其器件性能.其中,将石墨烯引入纳米TiO_2中,形成复合纳米材料,以提升材料本身的光电子传输效率,降低光生载流子复合率,为制备高性能光催化剂及光伏器件开辟了一条可行之路.然而,目前制备的纳米TiO_2/石墨烯复合材料的性能仍不理想,其中常见的问题为合成的材料团聚严重,导致光生载流子在界面传输阻力及复合率都十分高,限制其实际应用.此外,当前大多数关于纳米TiO_2/石墨烯的制备方法仍为溶胶凝胶法、水热法等,所得材料需要进一步进行微纳加工方能形成介孔结构;这些加工方式往往需要二次退火处理,这会进一步加重纳米材料的团聚现象,导致孔隙率分布混乱、材料界面缺陷增多等不良结果.因此,本文采用一步法-蒸汽热法成功制备了TiO_2/石墨烯复合多孔薄膜,无需二次热处理.实验结果表明,所制TiO_2/石墨烯复合物(VTH)的形貌为二维结构,其比表面积高达260 m~2g~(–1),获得的多孔薄膜无明显团聚且孔隙分布集中.当复合物中还原氧化石墨烯含量为5.0wt%时,其光催化活性最高,高于单一的TiO_2薄膜近3倍;将还原氧化石墨烯含量为0.75wt%的复合物用于染料敏化太阳能电池的光阳极时,光电转化效率达到7.58%,明显高于传统方法制备的单一TiO_2的(4.38%).  相似文献   

18.
光催化是一种理想的应对全球能源短缺和环境污染问题的绿色化学技术,可以实现有机物降解、水分解和二氧化碳光还原等.光催化反应效率受诸多因素影响,其中光生载流子(电子和空穴)的分离和传输具有至关重要的作用.以往研究表明,构筑多元复合光催化材料体系有利于光生电子和空穴有效分离和传递,促进催化剂表面的还原和氧化反应,从而提高其光催化效率.基于以上考虑,我们提出了一种新型的石墨烯/电气石/TiO_2三元复合光催化材料体系,其中TiO_2因其价格低廉、无毒和抗光腐蚀等优点而被广泛用作光催化材料;石墨烯(G)拥有独特的二维结构、高的电子迁移率、大的比表面积,是一种优异的催化剂载体;电气石(T)的一个重要性质是表面存在自发极化的静电场,该静电场将会影响光激发载流子的分离、传递和光催化反应过程.利用水热法合成了不同成分的石墨烯/电气石/TiO_2三元复合材料体系.为了对比研究石墨烯表面电荷性质的影响,其中一组的石墨烯(氧化石墨)为直接采用改良的Hummers法所制备,其表面带负电;另一组的石墨烯经聚二烯丙基二甲基氯化铵(PDDA)修饰,使其表面带正电.X射线衍射结果显示,三元复合材料中TiO_2为锐钛矿相,其结晶性没有因为与石墨烯和电气石的复合而受到影响.扫描和透射电子显微分析表明,TiO_2的平均颗粒大小为15 nm左右,并且与石墨烯和电气石均匀复合.傅里叶变换红外光谱和zeta电位表征分析证实,PDDA可以有效地对石墨烯进行功能化改性,使其表面带正电.紫外-可见分光光谱显示,石墨烯/电气石/TiO_2三元复合材料与TiO_2的吸收带边一致,复合材料中石墨烯和电气石并没有改变TiO_2的光吸收特征.光催化降解异丙醇实验表明,石墨烯/电气石/TiO_2三元复合材料优于单纯的TiO_2、石墨烯/TiO_2以及电气石/TiO_2二元复合材料,当石墨烯和电气石的质量百分比分别为0.5%和5%时,三元复合材料降解异丙醇产生丙酮的速率达到最高(223μmol/h).特别值得指出的是,由表面带负电的石墨烯组成的复合材料比由带正电荷的PDDA-石墨烯组成的复合材料具有更高的光催化性能,原因如下:在水溶液中显示正zeta电位值的TiO_2与带负电的石墨烯/电气石复合物静电吸引而均匀紧密复合,有利于TiO 2中光生电子和空穴的快速分离和传递,从而使得石墨烯/电气石/TiO_2三元复合材料具有较高的光催化性能;而带正电的PDDA-石墨烯/电气石复合物和TiO_2颗粒相互排斥而不宜复合,导致PDDA-石墨烯基复合材料的光催化活性降低.机理研究揭示,在三元复合材料光催化降解异丙醇的反应中起主要作用的是光生电子和空穴.基于以上研究结果,我们提出了三元复合材料光催化降解异丙醇的反应机理.  相似文献   

19.
2-仲丁基-4,6-二硝基苯酚(DNBP)作为杀虫剂、除草剂和烯烃基芳香族化合物阻聚剂而被广泛地应用于工农业生产中.在DNBP生产和使用过程中,会产生大量难以降解的有机废水,从而对人类和生态环境造成极大危害.因此,开展含DNBP废水的处理技术和方法研究具有重要的现实意义.TiO_2半导体材料由于具有良好的光化学特性和电化学行为,近几十年来一直是光催化领域的研究热点.在能量等于或大于TiO_2的带隙能级的辐照光照射下,TiO_2可以产生光生电子/空穴对(e~-/h~+).光生电子和空穴分别与TiO_2表面被吸附的H_2O和O_2分子反应,生成具有强氧化性的活性羟基自由基(·OH),对硝基酚类有机污染物具有较强的降解能力.TiO_2光催化反应属于非均相反应,反应在催化剂的表面进行,催化剂对污染物的吸附是影响其催化降解性能的重要因素.但是,传统TiO_2光催化剂存在比表面积小,对有机污染物吸附能力差,光生电子与空穴易于复合等缺陷,限制了TiO_2光催化技术的进一步发展和在水处理领域中的大规模应用.我们基于气凝胶具有多孔性、大比表面积和高孔隙率的特点,以富含硅、铝的工业废弃物粉煤灰为反应原料,首先利用碱熔法和常压干燥技术制备出SiO_2-Al_2O_3气凝胶.在此基础上,以钛酸四丁酯(TBOT)为反应前体,SiO_2-Al_2O_3气凝胶为载体,利用酸催化溶胶-凝胶法(sol-gel)制备出TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂.利用X射线粉末衍射(XRD)、傅里叶变换红外光谱(FT-IR)、透射电子显微镜(TEM)、N_2吸附-脱附(BET)、紫外-可见吸收光谱(UV-vis)等分析测试技术对所制备的TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂结构进行了表征.结果显示,在TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂中,粒径尺寸为10~30 nm的锐钛矿型TiO_2纳米颗粒均匀分散在SiO_2-Al_2O_3气凝胶载体上.TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂呈现典型介孔材料的IV型等温线.SiO_2-Al_2O_3气凝胶的加入极大提高了TiO_2光催化剂的比表面积和对有机污染物的吸附性能,但是对TiO_2光波吸收范围影响不大.在制备出TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂基础上,进一步对其在可见光条件下的光催化性能进行了研究.以500 W的Xe灯光源模拟自然太阳光,DNBP为探针污染物分子,系统考察了可见光照射条件下溶液p H值、光催化剂用量、光反应时间、DNBP溶液初始浓度不同因素对TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂催化活性的影响.结果表明,TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂对DNBP有机污染物的吸附率和光降解率明显高于纯TiO_2样品.在DNBP溶液初始浓度为0.167 mmol/L,p H=4.86,催化剂用量6 g/L,光照时间5 h的条件下,TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂对DNBP的降解率几乎高达100%.根据Langmuir-Hinshelwood方程,在低浓度下光催化降解反应符合一级反应动力学.所制备的TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂具有良好的稳定性和重复利用性能.重复利用5次后,TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂对DNBP的降解率仍高达90%以上.利用紫外-可见分光光度计、气相-质谱联用仪对DNBP降解中间产物进行了分析,探讨了DNBP的光催化降解机理.  相似文献   

20.
通过热解-水热两步法制备了石墨烯/石墨相氮化碳/二硫化钼(RGO/g-C_3N_4/MoS_2)复合材料并使用多种分析表征手段对RGO/g-C_3N_4/MoS_2的结构、形貌及光催化性能进行分析。结果表明,具有异质结构的g-C_3N_4/MoS_2与RGO复合后,通过良好的界面接触和电荷的快速转移,增强了其光生电子-空穴的分离。经可见光照射120 min后,RGO/g-C_3N_4/MoS_2复合材料可降解97%亚甲基蓝。此外,循环实验表明RGO/g-C_3N_4/MoS_2复合材料具有良好的稳定性,经5次循环仍能保持93.2%的光催化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号