首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
杨乐意  刘乔  陈重一 《化学通报》2022,85(12):1410-1418
超级电容器是一种具有高功率密度、宽工作温度范围和出色循环稳定性等优点的新型储能设备。聚合物水凝胶因优异的离子电导率和力学性能,被广泛应用于新一代高性能超级电容器领域。其作为准固态电解质材料,能够克服电解液泄漏对电路造成的损害,同时促进器件的轻量化和集成化。本文以聚合物水凝胶的化学结构为切入点,综述了水凝胶电解质的结构对其力学性能及电化学性能的影响,并展望了其在超级电容器中的发展趋势。  相似文献   

2.
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)作引发剂引发交联聚乙烯醇(PVA)-戊二醛(GA)制备水凝胶聚合物电解质并组装成超级电容器.分别由红外光谱、交流阻抗、循环伏安与恒电流充放电曲线测定该凝胶聚合物电解质及超级电容器的电化学性能.结果表明,该聚合物电解质电导率可达1.23 mS/cm(室温).而且,以1.0 g AMPS引发0.05mL GA(5 %)与1.0 g PVA交联,制得的凝胶聚合物电解质超级电容器比电容可达139F/g,50次充放电后其值仍于80%以上.  相似文献   

3.
以聚乙烯吡咯烷酮(PVP)提高戊二醛(GA)交联的聚乙烯醇(PVA)凝胶在1 mol/L的H2SO4溶液中的溶胀度,制备出一种用于柔性超级电容器的凝胶聚合物电解质膜,并对该电解质膜的结构、形貌、溶胀度、力学性能和电导率等进行了表征.在此基础上,组装了一种基于石墨烯电极的柔性超级电容器.结果表明:随着PVP用量的增加,膜孔数量增多且孔径增大,溶胀度增加,电导率提高,但力学强度下降.电解质膜中PVP质量分数为20%时,所组装的柔性超级电容器的比电容为111 F/g,其电化学性能的温度依赖性较低,稳定性较好.  相似文献   

4.
以纸浆为原料制备得到一种粘胶液,经静置水化交联,得到一种纤维素凝胶电解质(XWD-NaOH);添加亚铁氰化钾,使获得的新型纤维素凝胶电解质(XWD-NaOH-K 4[Fe(CN)6])呈现良好的氧化还原活性,电导率达15.3 mS/cm;与XWD-NaOH相比,XWD-NaOH-K 4[Fe(CN)6]电解质超级电容器,在0.5 A/g电流密度下,比电容、功率密度和能量密度分别提高了57%、111%和214%,并且体系具有更低的内阻、电荷转移电阻及高的循环稳定性。  相似文献   

5.
姜志洁 《合成化学》2022,30(6):510-518
不可再生能源的快速消耗和可再生能源的低功率转换效率以及分散的能源生产,迫使人类将注意力集中在基于绿色和可持续资源的电化学储能(EES)设备,如超级电容器。纳米纤维素(NC)因其独特的结构和性能,如高比模量、在大多数溶剂中的优异稳定性、低毒性和天然丰度,成为一种可持续发展的纳米材料。低成本和简单的合成技术进一步使NC成为...  相似文献   

6.
柔性超级电容器卓越的功率密度和柔性应用能力与可穿戴设备对柔性电源的紧迫需求相吻合,同时具备较大的能量密度提升潜力,使其受到了广泛关注。将水、有机液体、离子液体和导电离子等溶入三维聚合物网络构建导电凝胶作为电解质,不仅简化了柔性超级电容器结构,还通过引入多样的交联方式和合成材料进一步提升其性能,已成为近年备受瞩目的研究方向。本文深入分析并总结了凝胶电解质应用于柔性超级电容器的独特优势及其关键性能优化的方法,包括:调控导电离子含量及传输路径以提高离子电导率;采用双重物理交联和模板化合成策略调节凝胶网络结构以改善机械性能;引入有机液体、离子液体等溶剂限制冰晶形成,从而拓宽工作温度范围。然而,凝胶电解质在柔性超级电容器应用中仍然面临一系列挑战,包括生物相容性不足、电极/电解质界面兼容性弱以及合成材料的环保性不佳。未来研究需进一步解决上述问题,以实现凝胶电解质在柔性超级电容器中的高效应用。  相似文献   

7.
碳基超级电容器电极材料的研究进展   总被引:1,自引:0,他引:1  
雷文  赵晓梅  何平  刘洪涛 《化学通报》2013,(11):981-987
超级电容器是近年迅速发展起来的一种新型储能元件,决定超级电容器性能的最重要因素是电极材料。碳材料以其比电容高、循环寿命长和资源丰富等优点,已经成为当前超级电容器电极材料的有力竞争者。用作超级电容器电极的碳材料主要包括活性炭、碳纳米管、石墨烯等。本文详细介绍了超级电容器用碳材料的特点、应用及发展状况,并指出制备具有大比表面积和高导电率的多孔碳是当前碳材料电极的主要研究方向。  相似文献   

8.
电化学超级电容器电极材料的研究进展   总被引:9,自引:0,他引:9  
苗小丽  邓正华 《合成化学》2002,10(2):106-109,119
回顾了电化学超级电容器电极材料的研究进展,并对不同电极材料的储能原理和性能特点进行了简要的阐述。参考文献29篇。  相似文献   

9.
传统超级电容器受低能量密度的限制,在当今器件研发中需更加关注电极材料结构-组成-性能研究。 本文总结了新型赝电容器的发展历程及其研发过程中存在的挑战与解决措施,着重从胶体离子超级电容器电极材料等新型的电极材料和氧化还原电解质两个方面进行综述。 原位合成的胶体离子超级电容器电极材料比非原位合成的电极材料具有更高的反应活性,并且以近似离子的状态存在,有效增加了电极材料的比容量。 氧化还原电解质的使用在不改变电极材料的前提下,进一步提高了超级电容器的能量密度。 初步介绍了新型锂离子电容器。 锂离子电容器同时使用电池型材料和电容型材料,可提高其能量密度。 依据当前超级电容器的研发现状,未来有望将电池材料和电容器材料结合使用,进而形成电池电容器或电容电池,使其同时具有高的能量密度和功率密度。  相似文献   

10.
孟祥利  殷金玲  任娟  张宝宏 《电化学》2007,13(1):101-105
以碳酸丙烯酯(PC)和碳酸乙烯酯(EC)作增塑剂,LiClO4作支持电解质,高比表面积活性炭为电极,内聚合法制作PMMA-PC+EC-LiClO4体系凝胶聚合物电解质(GPE)双电层电容器.应用交流阻抗、循环伏安、恒流充放电等方法研究了该电容器的性能.结果表明,PMMA-GPE的离子电导率在室温下达3.7 mS.cm-1,电容器的工作电压达3 V,比容量达41.6 F.g-1(I=1 mA.cm-2),等效串联电阻仅为几欧姆.  相似文献   

11.
超级电容器寿命长,安全性高,并可以实现快速充放电,是化学电源研究的热点之一。然而,超级电容器的能量密度较低限制了其更多的应用。因此,超级电容器领域的研究关注点在如何提高超级电容器的能量密度。其中,提高比容量是提高能量密度的一种有效途径。本文通过对电极材料和电解液的优化来研究制备得到高容量超级电容器的方法。电极材料的比表面积、孔道结构和导电性对其电化学性能有着直接的影响。一方面,通过优化电极材料的孔道结构和比表面积可以增加活性位点并提高电解液离子传导率,从而得到高比电容。另一方面,电极材料导电性的提高有利于提升其电子传导率从而得到较高的比容量。本文分别对碳材料和金属氧化物/氢氧化物的优化达到了增加双电层电容和赝电容的目的。不仅如此,还可以通过在电解液中增加氧化还原电对从而得到高比电容。这一方法为高容量超级电容器的制备提供了新的思路。  相似文献   

12.
超级电容器,也称电化学电容器,它具有比锂离子电池更高的功率密度和更长的循环寿命,与此同时,其能量密度也高于传统的电介质电容器,因此成为了一类具有很大应用前景的能量储存设备。随着人们对智能电子设备性能要求的提高,各类柔性可穿戴电子设备相继出现,柔性超级电容器作为一类便携式能量储存设备也受到了许多研究者的关注。在持续的研究中,二维平面结构的柔性超级电容器得到较大发展并日益成熟,与此同时,随着对柔性电子设备可穿戴性能要求的提高,一维纤维结构的柔性超级电容器应运而生,并且得到了初步发展。本文首先介绍了超级电容器的储能原理和重要性能的评估方法;接着,重点概述了二维平面结构和一维纤维结构两类柔性超级电容器器件结构和电极材料的研究进展;最后,总结了两类柔性超级电容器仍然存在并亟待解决的问题以及未来发展所面临的关键技术挑战,期望能为柔性超级电容器的研究提供参考和借鉴。  相似文献   

13.
超级电容器作为一种新型的能源存储装置,因为其比容量大、充放电速度快、循环寿命长等优点,在储能领域引起了极为广泛的关注。电极材料是决定超级电容器性能的核心因素,其中,常用的超级电容器电极材料主要有如下三类:碳基材料、金属氧化物及氢氧化物材料和导电聚合物材料。本文综述了超级电容器的工作原理并详细介绍了基于碳材料及其二元、三元复合体系的电极材料的研究进展。  相似文献   

14.
Biomass-derived porous carbons show great potential as electrode materials for supercapacitors due to the environmental friendliness. However, most of the carbonaceous electrode materials suffer from low specific capaci-tance and rate capacity because of the poor porosity. Here, we reported a simple and effective approach to prepare micro/nano-hierarchical structured carbon materials derived from rice husk by NaOH-KOH molten salt co-activation. The as-prepared activated carbons exhibit high porosity and suitable pore size distributions for more electrolyte ion adsorption, which are all beneficial for achieving remarkable electrochemical performances, such as high specific capacitance(194.6 F/g), excellent rate capability(retention of 85.9%) and outstanding cycling stability. Thus, the above biomass-derived carbon materials with high porosity and micro/nano structures obtained by co-activation method offered a new insight into novel electrode material for the use in energy storage systems with high energy density and excellent rate performance.  相似文献   

15.
对高性能超级电容器不断增长的需求促进了无粘合剂电极材料的快速发展。静电纺纳米纤维由于具有良好的柔性、大比表面积、高孔隙率、容易制备等优点引起了研究者们的强烈关注。本文综述了静电纺纳米纤维基无粘合剂电极材料在超级电容器领域的研究进展,阐述了不同材料的设计制备过程和提升电化学性能的诸多方法,并指明了静电纺纳米纤维基超级电容器无粘合剂电极材料的发展机遇与挑战,为性能优异的无粘合剂超级电容器电极材料的进一步开发与应用拓宽了思路。  相似文献   

16.
设计合成了一种新型有机硅室温离子液体(SiN1IL), 并对其化学结构和电化学窗口进行表征, 通过与具有高介电常数的丙烯碳酸酯(PC)/低粘度的乙腈(AN)匹配组成电解液, 其离子电导率达到商业实际应用的要求(19.6 mS·cm-1). 对以活性炭(AC)为对称电极的超级电容器的电化学性能测试表明, SiN1IL 基电解液与活性炭有很好的界面相容性, 其高倍率充放电、阻抗性能优于商用四乙基四氟硼酸铵(Et4NBF4)/PC 电解液, 在电流密度为1000 mA·g-1的条件下, 工作电压为2.7 V, 其比电容为108 F·g-1.  相似文献   

17.
以壳聚糖为原料在 600、700、800和900℃直接炭化制备多孔炭 C-600,C-700, C-800 和C-900,其BET比表面积分别为278、461、515和625 m2·g-1.用恒流充放电和循环伏安法表征了其电化学性能. 结果表明, 由 C-800 制备电极的循环伏安图形更接近矩形, 在恒电流充放电实验中阴极和阳极过程基本对称, 说明该电极具有较好的电容性能.在 50 mA·g-1 的电流密度下,C-600、C-700、C-800和C-900的电容分别为96、120、154 和 28 F·g-1.由 C-800 制备电极的循环充放电稳定性好, 电流密度为1 A·g-1循环1000次后电容损失小于2%,说明壳聚糖制备多孔碳具有作为超级电容器电极材料的潜在价值. 同时还考察了不同浓度的电解液对C-800电化学性质的影响,发现在KOH浓度为 30%时的电容最大.依据实验结果,对多孔炭制备及其电化学性质间的关系进行了探讨.  相似文献   

18.
以未使用和使用氢氧化钠溶液处理的花生壳为碳源分别制备出微孔炭PSC-1和PSC-2.PSC-1和PSC-2的比表面积分别为552和726m2·g-1,其主要孔径都约为0.8nm.用PSC-1和PSC-2制备的电极和对称型超级电容器的循环伏安曲线均接近矩形,表明其具有良好的电容特性.在以微孔炭电极为工作电极、铂电极为对电极和银/氯化银电极为参比电极组成的三电极体系测量表明,在0.1A·g-1的电流密度下,PSC-1和PSC-2的比电容达到233和378F·g-1.经过1000次恒电流充放电循环后,在三电极体系和超级电容器中电极均表现出良好的稳定性和电容保持率.基于实验结果探讨了微孔炭的形成机理及其结构与电化学性质之间的联系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号