首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 827 毫秒
1.
高精度环形谱仪SRing作为HIAF装置的核心之一,是获取高品质放射性次级束,并将束流用于加速器技术研究、原子物理及核物理实验的关键设备。SRing有三种运行模式:等时性模式、正常模式与内靶模式。等时性模式下,SRing运行在特殊线性光学设置下,可以精确测量寿命低至几十微秒的原子核的质量。介绍SRing等时性模式的线性光学及高阶项校正的设计方案。在使用程序GICOSY进行等时性高阶项校正数值计算后,将得到的光学传输矩阵输入到程序MOCADI进行粒子跟踪模拟。以γt=1.43的等时性模式为例,SRing的动量接收度为±0.20%,粒子跟踪结果显示,在仅满足一阶等时性条件时SRing的质量分辨能力R=1.6×104。在保证动量接收度不变的前提下,考虑了等时性高阶项校正后SRing的质量分辨能力提高到R=1.2×106,达到设计要求。The Spectrometer Ring, as the most important experiment terminal of the High Intensity heavy-ion Accelerator Facility (HIAF) project, is a key device to obtain high-quality radioactive ion beams (RIBs) for atomic physics, nuclear physics experiments and accelerator technology researches. Three operation modes including the isochronous mode, the normal mode and the internal target mode, have been designed for the SRing. In the isochronous mode, the SRing operates under a special ion optics and could be used for precision mass measurement of short-lived nuclei with half-life shorter than several tens of microseconds. This study aims to design the ion optics for the isochronous mode and improve the mass resolving power of the SRing with higher-order ion-optical correction scheme for isochronism while preserve a large momentum acceptance of SRing. The ion optics and the higher-order correction for the isochronous mode are calculated with the code MAD-X and GICOSY respectively. Three ion optics with γt=1.43, 1.67, 1.83 settings have been calculated. The code MCOADI which utilizes the matrixes generated by the code GICOSY is used for particles tracking to verify the correction results. For the ion-optical setting of γt=1.43 with a momentum acceptance of ±0.20%, the mass resolving power of the SRing could be improved from R=1.6×104 to R=1.2×106, after isochronous higher-order corrections.  相似文献   

2.
 The combination of in-flight fragment separator and the isochronous mass spectrometry(IMS) in storage rings have been proven to be a powerful tool for the precision mass measurements of shortlived exotic nuclei. In IMS, the mass-over-charge ratio is only related to the revolution period of stored ions, and the relative mass resolution can reach up to the order of 10−6. However, the instability of the magnetic field of storage ring deteriorates the resolution of revolution period, making it very difficult to distinguish the ions with very close mass-over-charge ratio via their revolution periods. To improve the resolution of revolution periods, a new method of weighted shift correction (WSC) has been developed to accurately correct the influence of the magnetic field instabilities in the isochronous mass measurements of 58Ni projectile fragments. By using the new method, the influence of unstable magnetic fields can be greatly reduced, and the mass resolution can be improved by a factor up to 1.7. Moreover, for the ions that still cannot be distinguished after correcting the magnetic field instabilities, we developed a new method of pulse height analysis for particle identification. By analyzing the mean pulse amplitude of each ion from the timing detector, the stored ions with close mass-over-charge ratios but different charge states such as 34Ar and 51Co can be identified, and thus the mass of 51Co can be determined. The charge-resolved IMS may be helpful in the future experiments of isochronous mass measurement even for N =Z nuclei.  相似文献   

3.
A pilot experiment for mass measurement at CSRe   总被引:2,自引:1,他引:1  
A pilot experiment of mass measurement was performed at CSRe with the method of isochronous mass spectrometry. The secondary fragments produced via RIBLL2 with the primary beam of 400 MeV/u ^36Ar delivered by CSRm were injected into CSRe. The revolution periods of the stored ions,which depend on the mass-to-charge ratios of the stored ions,were measured with a time-of-flight detector system. The results show that the mass resolution around 8×10^-6 for △m/m is achieved.  相似文献   

4.
Secondary electron time detector for mass measurements at CSRe   总被引:1,自引:0,他引:1  
The Isochronous Mass Spectrometry is a high accurate mass spectrometer. A secondary electrons time detector has been developed and used for mass measurements. Secondary electrons from a thin carbon foil are accelerated by an electric field and deflected 180°by a magnetic field onto a micro-channel plate. The time detector has been tested with alpha particles and a time resolution of 197 ps (FWHM) was obtained in the laboratory. A mass resolution around 8×10^-6 for Am/m was achieved by using this time detector in a pilot mass measurement experiment.  相似文献   

5.
在兰州重离子加速器冷却储存环(HIRFL-CSR)上,用等时性质量谱仪首次研究了百微秒量级全剥离离子94mRu44+的衰变。94mRu44+由初级束流112Sn轰击Be靶产生,经过放射性束流线RIBLL2的筛选后注入到等时性设置的实验环CSRe中,并利用安装在实验环中的飞行时间探测器测量离子在CSRe中的循环周期。94mRu44+退激引起的质量改变会带来其循环周期的变化,由此直接观测到了94mRu44+退激到基态的过程。确定了本次实验中衰变事例探测的灵敏区间,并讨论了衰变发生时刻的测量精度。同时,测量了短寿命核素94mRu44+的质量,其半衰期约为100 μs,这是目前储存环质量谱仪测量的最短寿命核素的质量。The decay of the fully stripped ion 94mRu44+ in the order of one hundred microseconds has been studied for the first time by using the Isochronous Mass Spectrometry (IMS) at the HIRFL-CSR facility in Lanzhou. 94mRu44+ was produced via projectile fragmentation of a 112Sn primary beam bombarding on a 9Be production target. After the in-flight separation with RIBLL2, the ions were injected into the experimental ring (CSRe) and then stored there. The revolution times of the stored ions were measured by a Time-of-Flight (TOF) detector. Due to the mass change of a 94mRu44+ ion caused by its de-excitation to the ground state, hence the revolution time change, the decay process of 94mRu44+ could be directly observed in the CSRe. The sensitive window for detection of the decay events and the measurement precision of the decay time have been determined in this work. At the same time, we measured the mass of short-lived 94mRu44+ with the half-life about one hundred microseconds, which is the shortest among nuclides that have been studied by using storage-ring mass-spectrometry.  相似文献   

6.
Secondary electron time detector for mass measurements at CSRe   总被引:1,自引:0,他引:1  
The Isochronous Mass Spectrometry is a high accurate mass spectrometer. A secondary electrons time detector has been developed and used for mass measurements. Secondary electrons from a thin carbon foil are accelerated by an electric field and deffected 180° by a magnetic field onto a micro-channel plate. The time detector has been tested with alpha particles and a time resolution of 197 ps (FWHM) was obtained in the laboratory. A mass resolution around 8×10-6 for m/m was achieved by using this time detector in a pilot mass measurement experiment.  相似文献   

7.
综述了兰州冷却储存环CSRe上转变能洛伦兹因子的测量与校正的最新进展,详细阐述了基于等时性质谱仪实验数据测量储存环的转变能洛伦兹因子的方法,以及利用CSRe二极、四极、六极磁铁校正转变能洛伦兹因子曲线的结果。实验结果表明,二极磁铁和四极磁铁可以平移转变能洛伦兹因子曲线,六极磁铁可以旋转转变能洛伦兹因子曲线。通过校正CSRe的转变能洛伦兹因子曲线,将CSRe对目标离子的质量分辨能力R=m/△m=3.15(9)×104(FWHM)(回旋周期相对误差σT/T=7.3(2)×10-6)提高到1.72(4)×105(FWHM)(σT/T=1.34(3)×10-6)。  相似文献   

8.
We recalculate the two loop corrections in the background heat bath using real time formalism. The procedure of the integrations of loop momenta with dependence on finite temperature before the momenta without it has been followed. We determine the mass and wavefunction renormalization constants in the low temperature limit of QED, for the first time with this preferred order of integrations. The correction to electron mass and spinors in this limit is important in the early universe at the time of primordial nucleosynthesis as well as in astrophysics.  相似文献   

9.
在兰州重离子加速器冷却储存环(HIRFL-CSR)上,用初级束流112Sn35+轰击了靶厚约10 mm的Be靶,产生了101In的基态和低位同核异能态。这些实验产生的碎片每25 s经过放射性束流线RIBLL2的筛选后注入到实验环CSRe中,利用飞行时间探测器测量离子在CSRe中的回旋周期。在此次实验中,磁场晃动会导致离子在环内的循环周期发生改变,传统的离子鉴别方法难以完成大部分离子的鉴别。通过发展和运用单次注入离子鉴别这一新的离子鉴别方法,有效地消除了磁场晃动对于离子鉴别的影响,并清楚地将101In基态和低位同核异能态鉴别出来,从而首次在实验中观测到101In的低位同核异能态。实验得到的激发能与理论外推值在112 keV的误差范围内一致,其低位同核异能态的寿命大于200 μs。Isochronous mass spectrometry has been applied to 112Sn projectile fragments at the HIRFL-CSR facility in Lanzhou. To produce short-lived nuclei of interest, we used projectile fragmentation of 112Sn35+ primary beams in a~10 mm thick 9Be production target. The fragments were selected and analyzed by RIBLL2 and injected into the experimental storage ring(CSRe) every 25 s. To measure revolution times of stored ions,we used a Time-Of-Flight detector installed in CSRe. A new particle identification method was developed to distinguish ions on the measured revolution time spectrum for each injection. Based on this method, the shifts of the revolution time due to instable dipole magnet fields can be corrected and the ground and isomeric states of 101In have been well-resolved. The measured excitation energy is consistent with the theoretical value in the error range of 112 keV. The lifetime of the isomeric states of 101In is more than 200 μs.  相似文献   

10.
在手征SU(3) 夸克模型下应用共振群方法讨论了三个非奇异的双重子态的性质。计算中的模型参数取自我们以前的工作,拟合核子-核子相互作用散射相移确定下来的。首先,研究了氘核的性质,这是非常重要的,因为氘核是多年来实验上唯一发现的双重子态。氘核属于核子-核子系统,它是自旋为S =1 和同位旋为T =0 的双重子态。我们计算了氘核的结合能、散射长度以及氘核的相对运动波函数,结果表明手征SU(3) 夸克模型可以合理描述氘核的性质并且发现张量力对形成松散束缚态的氘核是重要的。然后,给出了S = 3 和T =0 的ΔΔ双重子态的理论预言结果,这里考虑了分波耦合和隐色道耦合效应,计算了结合能和均方根半径。结果表明,隐色道耦合效应比分波耦合效应大,也就是说隐色道耦合效应在形成(ΔΔ)ST=30 双重子态中是重要的。我们的理论预言结果在几十个MeV 左右,低于ΔΔ道的阈值但是高于NΔπ的阈值. 出乎意料地,我们的预言结果很接近最近2014 年WASA的实验结果。接着,给出了对S = 0 和T =3 的ΔΔ双重子态性质的最新研究结果,这里在以前的单道计算基础上考虑了隐色道耦合效应。结果表明,隐色道耦合对(ΔΔ)ST=03的结合能也有较大的影响。但是,和(ΔΔ)ST=30 一样,它的质量低于ΔΔ道的阈值但是高于NΔπ的阈值。最后,对S = 3 以及S = 0 两个不同ΔΔ自旋态,详细比较了两者结构之间的差异。结果表明,σ'介子交换和OGE 交换对自旋S = 0 和S = 1 态提供的吸引作用分别是主要的,从而导致耦合道计算中系统的结合能变大。In the present work we discuss three dibaryons without strangeness in the chiral SU(3) quark model by solving the resonating group method (RGM) equation. In the calculation, the model parameters are taken from our previous work in which the nucleon-nucleon (NN) scattering phase shifts are fitted quite well. Firstly, the structure of deuteron is discussed, which is very important since it is the first dibaryon confirmed by experiment in the past many years. Deuteron belongs to NN system with spin S =1 and isospin T =0, the binding energy, scattering length and the relative wave functions of deuteron are discussed. The results show that the chiral SU(3) quark model describes the properties of deuteron quite well and tensor interaction is important in forming the deuteron loosely bound. Secondly, the predicted results of ΔΔ dibaryon with S =3 and T =0 are shown, the resultant binding energy and size of root-mean-square (RMS) of six quarks are calculated by including the L coupling and hidden color channel (CC) coupling. The results show that the CC coupling effect is much larger than the L mixing effect, which means that CC coupling plays an important role in forming the spin S =3 ΔΔ dibayon state. Our predicted binding energy is several tens MeV, it is lower than the threshold of the ΔΔ channel and higher than the mass of NΔπ. Unexpectedly, our predicted mass is quite close to the recent confirmation by WASA experiments in 2014. Thirdly, we present our new results of ΔΔ dibaryon with S = 0 and T =3, obtained recently by extending the single-channel calculation to including the CC coupling. It is seen that the CC coupling also has a relatively large effect on (ΔΔ)ST=03 state. However, its mass is still lower than the threshold of the ΔΔ channel and higher than the mass of NΔπ, similar as that of (ΔΔ)ST=30 state. Finally, we further make some comparisons between S = 3 and S = 0 ΔΔ states to show the difference of the two dibaryons. The results show that the attractive interactions from σ' meson and OGE exchanges are dominantly important for S =0 and S =3 states, respectively, so their binding energies all become larger in coupled-channel calculation.  相似文献   

11.
为了精确测量短寿命原子核质量,提出了在强流重离子加速器装置(HIAF)上建造高精度环形质量谱仪SRing。SRing长188.7 m,最大设计磁刚度为1 3 T·m,主要由磁聚焦结构、注入系统、引出系统、随机冷却以及探测系统等组成。SRing将运行在等时性模式和收集模式下用于短寿命原子核质量的精确测量和放射性次级束流收集并纯化。详细介绍了SRing的线性光学设计,并给出两种模式下的光学设计、注入及引出系统的设计等,设计参数优化完毕后,机器测量精度有望提高到10~6。  相似文献   

12.
为了精确测量短寿命原子核质量,提出了在强流重离子加速器装置(HIAF)上建造高精度环形质量谱仪SRing。SRing长188.7 m,最大设计磁刚度为13 Tm,主要由磁聚焦结构、注入系统、引出系统、随机冷却以及探测系统等组成。SRing将运行在等时性模式和收集模式下用于短寿命原子核质量的精确测量和放射性次级束流收集并纯化。详细介绍了SRing的线性光学设计,并给出两种模式下的光学设计、注入及引出系统的设计等,设计参数优化完毕后,机器测量精度有望提高到106。  相似文献   

13.
放射性次级束流分离器是强流重离子加速器装置中,连接增强器和高精度环形谱仪的束流输运线,用于传输重离子束流以及放射性次级束流。为了满足束流传输的要求,并维持相连增强器和高精度环形谱仪的极高真空,放射性次级束流分离器真空系统的平均压强应低于5×10-7 Pa。因此,需要验证真空系统设计方案的可行性,以及设计方案能否满足要求的压强范围。通过现有的同步储存环CSRm中的真空计监测数据以及软件BOLIDE的模拟结果对比,对真空压力计算软件VAKTRAK的使用方法和计算结果进行验证;采用VAKTRAK模拟计算不同真空参数下(流导、出气率以及泵速)放射性次级束流分离器真空系统的压力分布。根据计算结果,放射性次级束流分离器真空系统的平均压强可以达到1.79×10-7 Pa (H2),满足物理实验和工程设计的要求。通过模拟计算结果,放射性次级束流分离器真空系统的设计方案的可行性得到验证,系统设计的真空度满足要求。HIAF Fragment Separator(HFRS) is connected with Booster Ring(BRing) and Spectrometer Ring (SRing) in the HIAF and used to transfer the ion beams and radioactive secondary beams. To satisfy the requirements of beam transmission and maintain the extremely high vacuum of BRing and SRing, the average pressure of HFRS vacuum system should be lower than 5×10-7 Pa. Therefore, the feasibility of the design scheme and whether the design scheme would fulfill the required vacuum range or not should be verified. Based on the measured data on the current sychrontron CSRm and the simulation results of BOLIDE, the calculation results of VAKTRAK are verified and then VAKTRAK is used to calculate the pressure profiles of different parameters(such as the conductance, out-gassing and pumping speed) for HFRS. According to the calculation results, the average pressure of HFRS vacuum system could be 1.79×10-7(H2) which achieves the required pressure for physics experiments and engineering design. According the calculation results of this paper, the feasibility of the designed HFRS vacuum system has been verified and the design of system satisfies the vacuum requirements.  相似文献   

14.
程楠  陈炜  刘琴  徐丹  杨飞  桂有珍  蔡海文 《中国物理 B》2016,25(1):14206-014206
A system of jointly transferring time signals with a rate of 1 pulse per second(PPS) and frequency signals of 10 MHz via a dense wavelength division multiplex-based(DWDM) fiber is demonstrated in this paper.The noises of the fiber links are suppressed and compensated for by a controlled fiber delay line.A method of calibrating and characterizing time is described.The 1PPS is synchronized by feed-forward calibrating the fiber delays precisely.The system is experimentally examined via a 110 km spooled fiber in laboratory.The frequency stabilities of the user end with compensation are1.8×10~(-14) at 1 s and 2.0×10~(-17) at 10~4 s average time.The calculated uncertainty of time synchronization is 13.1 ps,whereas the direct measurement of the uncertainty is 12 ps.Next,the frequency and 1PPS are transferred via a metropolitan area optical fiber network from one central site to two remote sites with distances of 14 km and 110 km.The frequency stabilities of 14 km link reach 3.0×10~(-14) averaged in 1 s and 1.4×10~(-17) in 10~4 s respectively;and the stabilities of 110 km link are 8.3×10~(-14) and 1.7×10~(-17),respectively.The accuracies of synchronization are estimated to be 12.3 ps for the14 km link and 13.1 ps for the 110 km link,respectively.  相似文献   

15.
A method of using the Bardeen-Cooper-Schrieffer (BCS) nuclear wave function to treat the two-nucleon mechanism for neutiinoless double beta decay process 0+ → 0+ is proposed.The neutrinoless decay mode and the neutrinoless decay accompanied by a Majoron emission mode of 82Se are studikd. Our cdculated results show that to reproduce the experimental value of γ(ov) > 1.8 × 1022 yr for neutrinoless double beta decai of 82Se the Majorana neutrino mass mv < 6.2 eV and the mixing parameter of right-handed current η < 7.0 × 10-6 In the emission with a Majoron mode the effective Majoron coupling to neutrino is deduced from the experimental value of γ(ov,H) > 4.4 × 1020 yr for 82Se with the result H0> < 6.2 × 10-4.  相似文献   

16.
The effective Hamiltonian for nonleptonic decays of strange, charm and beauty, involving the QCD corrections at short distances but with possible t-quark mass mt > mw and a correction of the initial value for the renormalization group equations, is computed in the framework of the operator product expansion (OPE). The numerical results show that our calculation gives corrections in right direction for approaching to the Δ1=1/2 rule and if using the latest experimental measurements on δ and ε'/ε for system as input, the KM parameter ε22 would be constrained in a reasonable region (2.5~22.5)×10-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号