首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
铝掺杂针铁矿的制备、表征及吸附氟的特性   总被引:1,自引:0,他引:1  
水热条件下制备了针铁矿(Goe)和几种铝掺杂针铁矿(Goe-Al_(0.1),Goe-Al_(0.2)和Goe-Al_(0.4)),用X射线衍射(XRD)、扫描电镜(SEM)、氮气物理性吸附、酸碱滴定等手段对样品进行了表征,并研究了它们对氟离子的吸附特性。结果表明,随着铝掺杂量的增加,铝掺杂针铁矿的结晶度不断减弱、颗粒的长度不断减小。4种样品的微孔表面积、孔体积和表面分形度都表现为GoeGoeAl0.1Goe-Al_(0.2)Goe-Al_(0.4),而孔径分布表现为相反的顺序。Goe、Goe-Al_(0.1)、Goe-Al_(0.2)和Goe-Al_(0.4)的电荷零点(PZC)分别为8.2、8.3、8.5和8.7,pH=5.0时它们的表面电荷量分别为0.66、0.83、1.03和1.19 mmol·g~(-1)。准二级动力学模型适合描述4种样品对氟的吸附动力学过程,表明化学吸附是主要作用机制。一位Langmuir模型可较好的拟合等温吸附数据(R2为0.967~0.981),二位Langmuir模型对等温吸附数据的拟合度更高(R2为0.982~0.995),而Freundlich模型的拟合度较低(R2为0.877~0.912)。初始pH=5.0时,Goe、Goe-Al_(0.1)、Goe-Al_(0.2)和Goe-Al_(0.4)对氟的最大吸附容量分别为8.83、10.24、11.72和12.86 mg·g~(-1)。可见,铝掺杂针铁矿对土-水环境中氟的吸附容量高于纯针铁矿。  相似文献   

2.
采用共沉淀法制备了3种不同含铁量的氧化铁改性蛭石(Verm-Fex,x=5,10,20),研究了纯蛭石(Verm)和Verm-Fex的表面性质及吸附氟的特性。与样品Verm比较,3种Verm-Fex中Verm的d(002)层间距略有升高;Verm-Fex的孔体积、表面积、表面分形度均随含铁量的增加而升高,其中微孔体积和外表面积的增加幅度更明显。4种样品的等电点(IEP)也随含铁量的增加而明显升高;初始p H=5.0时,它们的表面ζ电位分别为-16.4,-6.1,10.5和28.4 m V。4种样品对氟的等温吸附数据用单吸附位Langmuir模型拟合(R2=0.973~0.995)时,Verm的R2最高;双吸附位Langmuir模型可很好地描述3种Verm-Fex样品的等温吸附过程(R2=0.991~0.998);Freundlich模型对4种样品吸附数据的拟合度较差(R2=0.835~0.937),但R2随样品含铁量的增加而略微升高。初始p H=5.0时,Verm和Verm-Fex(x=5,10,20)对氟的最大吸附容量(qmax)分别为3.18,6.76,9.27和12.43 mg·g-1。可见,Verm-Fex(尤其含铁量较高的产物)对表生环境中氟的吸附固定性能明显高于Verm。  相似文献   

3.
采用共沉淀法制备了3种聚合羟基铁改性蒙脱石(Mt-Fex,x=1,2,3),对比研究了纯蒙脱石(Mt)和Mt-Fex(x=1,2,3)的表面性质及吸附Se(Ⅵ)的特性。结果表明,Mt样品的d(001)层间距为1.296 nm,在Mt-Fex中升高至1.430 nm以上;与Mt样品比较,MtFex的孔体积、表面积、表面分形度均随含铁量的增加而升高,其中微孔体积和微孔表面积的变化尤为明显;Mt样品的等电点(IEP)低于3,而Mt-Fe3的IEP升高至6.8;初始p H=5.0时,Mt和Mt-Fex(x=1,2,3)的表面ζ电位分别为-33.5,-11.7,9.9和33.2m V。单吸附位Langmuir模型能够很好地拟合Mt样品对Se(VI)的等温吸附数据(R2=0.993),4种样品吸附数据的单吸附位Langmuir拟合判断系数(R2)随样品含铁量的增加而降低;3种Mt-Fex样品的吸附数据更适合用双吸附位Langmuir模型拟合(R2=0.993~0.997);Freundlich模型对4种样品的吸附数据拟合度较低(R2=0.849~0.970),其判断系数(R2)随样品含铁量的增加而升高。初始p H=5.0时,Mt和Mt-Fex(x=1,2,3)对Se(Ⅵ)的吸附容量分别为4.23,7.83,10.38和14.34 mg·g-1。可见,聚合羟基铁含量较高的Mt-Fex样品对土-水体系中Se(Ⅵ)的固定能力明显高于Mt。  相似文献   

4.
采用共沉淀法制备了3种聚合羟基铁改性蒙脱石(Mt-Fex,x=1,2,3),对比研究了纯蒙脱石(Mt)和Mt-Fex(x=1,2,3)的表面性质及吸附Se(Ⅵ)的特性。结果表明,Mt样品的d(001)层间距为1.296 nm,在Mt-Fex中升高至1.430 nm以上;与Mt样品比较,MtFex的孔体积、表面积、表面分形度均随含铁量的增加而升高,其中微孔体积和微孔表面积的变化尤为明显;Mt样品的等电点(IEP)低于3,而Mt-Fe3的IEP升高至6.8;初始p H=5.0时,Mt和Mt-Fex(x=1,2,3)的表面ζ电位分别为-33.5,-11.7,9.9和33.2m V。单吸附位Langmuir模型能够很好地拟合Mt样品对Se(VI)的等温吸附数据(R2=0.993),4种样品吸附数据的单吸附位Langmuir拟合判断系数(R2)随样品含铁量的增加而降低;3种Mt-Fex样品的吸附数据更适合用双吸附位Langmuir模型拟合(R2=0.993~0.997);Freundlich模型对4种样品的吸附数据拟合度较低(R2=0.849~0.970),其判断系数(R2)随样品含铁量的增加而升高。初始p H=5.0时,Mt和Mt-Fex(x=1,2,3)对Se(Ⅵ)的吸附容量分别为4.23,7.83,10.38和14.34 mg·g-1。可见,聚合羟基铁含量较高的Mt-Fex样品对土-水体系中Se(Ⅵ)的固定能力明显高于Mt。  相似文献   

5.
利用原位共沉淀法合成了羟基磷灰石/壳聚糖复合吸附剂,通过扫描电镜、X射线粉末衍射、红外光谱和N2吸附-脱附曲线,研究复合前后羟基磷灰石的理化特征变化。实验结果表明与壳聚糖复合后羟基磷灰石的晶型并没有改变,只是结晶度有所降低,且复合后表面形成了不规则的凹凸结构,表面粗糙度增加。比表面积从106.75m2/g增加到127.58m2/g。复合吸附剂孔径大部分集中在10~50nm,属于介孔结构。利用Langmuir和Freundlich吸附等温方程对实验数据进行了拟合,对比相关系数R2值,Langmuir模型能更好地描述该吸附过程。复合吸附剂对氟离子的吸附符合拟二级反应动力学方程。计算了吸附热力学和动力学参数值,探讨了复合吸附剂对氟离子的吸附机理。ΔG0<0、ΔH0>0和ΔS0>0,说明复合吸附剂对氟离子的吸附是自发的、吸热的熵增过程,温度升高有利于吸附。吸附活化能(Ea)=15.03kJ·mol-1,迁移能(E)=7.639kJ·mol-1,说明该吸附过程以物理吸附为主。  相似文献   

6.
水热条件下制备了针铁矿(Goe)和几种铝掺杂针铁矿(Goe-Al0.1,Goe-Al0.2和Goe-Al0.4),用X射线衍射(XRD)、扫描电镜(SEM)、氮气物理性吸附、酸碱滴定等手段对样品进行了表征,并研究了它们对氟离子的吸附特性。结果表明,随着铝掺杂量的增加,铝掺杂针铁矿的结晶度不断减弱、颗粒的长度不断减小。4种样品的微孔表面积、孔体积和表面分形度都表现为Goe < Goe-Al0.1 < Goe-Al0.2 < Goe-Al0.4,而孔径分布表现为相反的顺序。Goe、Goe-Al0.1、Goe-Al0.2和Goe-Al0.4的电荷零点(PZC)分别为8.2、8.3、8.5和8.7,pH=5.0时它们的表面电荷量分别为0.66、0.83、1.03和1.19 mmol·g-1。准二级动力学模型适合描述4种样品对氟的吸附动力学过程,表明化学吸附是主要作用机制。一位Langmuir模型可较好的拟合等温吸附数据(R2为0.967~0.981),二位Langmuir模型对等温吸附数据的拟合度更高(R2为0.982~0.995),而Freundlich模型的拟合度较低(R2为0.877~0.912)。初始pH=5.0时,Goe、Goe-Al0.1、Goe-Al0.2和Goe-Al0.4对氟的最大吸附容量分别为8.83、10.24、11.72和12.86 mg·g-1。可见,铝掺杂针铁矿对土水环境中氟的吸附容量高于纯针铁矿。  相似文献   

7.
用延展X射线吸收精细结构光谱(EXAFS)研究了不同温度对Zn(Ⅱ)-锐钛矿型TiO2吸附产物微观构型和吸附可逆性的影响机制.宏观的吸附-解吸实验表明,不同温度下的吸附等温线可以用Langmuir模型进行较好的描述(R2≥0.990).随温度升高,吸附等温线显著升高,Zn(Ⅱ)在TiO2表面的饱和吸附量由5℃时的0.125mmol·g-1增至40℃时的0.446mmol·g-1;而体系的不可逆性明显减弱,解吸滞后角θ由32.85°减至8.64°.求得体系反应的热力学参数ΔH、ΔS分别为24.55kJ·mol-1和159.13J·mol-1·K-1.EXAFS结果表明,Zn(Ⅱ)主要是通过共用水合Zn(II)离子及TiO2表面上的O原子结合到TiO2表面上,其平均Zn-O原子间距为RZn-O=(0.199±0.001)nm.第二配位层(Zn-Ti层)的EXAFS图谱分析结果表明,存在两个典型的Zn-Ti原子间距,即R1=(0.325±0.001)nm(边-边结合的强吸附)和R2=(0.369±0.001)nm(角-角结合的弱吸附).随温度升高,强吸附比例(CN1)基本不变而弱吸附比例(CN2)增加,两者比值(CN1/CN2)逐渐减小.该比值的变化从微观角度解释了宏观实验中温度升高,不可逆性减弱的吸附现象.  相似文献   

8.
本文在空气气氛中热处理菱铁矿制备纳米结构化赤铁矿,研究了超声时间对制备的纳米结构化赤铁矿物化性质的影响,考察了反应时间、pH、离子强度、初始浓度对纳米结构化赤铁矿吸附Eu(Ⅲ)的影响.系列表征表明,热处理菱铁矿可形成纳米结构化赤铁矿,超声进一步降低了赤铁矿的粒径和结晶度,增大了比表面积.与纳米结构化赤铁矿相比,超声1 h得到的赤铁矿(PCH-3)具有最大的比表面积(29.37 m~2/g).批实验结果表明, T=288 K,pH 5.5时PCH-3对Eu(Ⅲ)的吸附具有最大的速率常数(K_2=3.49 g/(mg min))和容量(4.88 mg/g). X射线光电子能谱(XPS)分析证实,含氧官能团(特别是羟基)是纳米结构化赤铁矿富集Eu(Ⅲ)的主要吸附位点.而且适当的超声处理可显著提高纳米结构化赤铁矿表面反应性.该研究对矿物纳米结构化材料吸附重金属离子提供了重要的理论依据.  相似文献   

9.
用延展X射线吸收精细结构(EXAFS)光谱和密度泛函理论(DFT)研究了As(Ⅴ)-TiO2体系的吸附机理.离子强度变化对As(Ⅴ)-TiO2体系吸附无显著影响,表明吸附后形成了内层络合物.EXAFS结果表明,As(Ⅴ)原子主要通过-AsO4上的O原子结合到TiO2表面上,平均As-O原子间距(R)在吸附前后无明显变化,保持在(0.169±0.001)nm.As-Ti层的EXAFS分析结果与DFT计算的吸附构型的As-Ti原子间距对照表明,体系存在两种主要亚稳平衡吸附(MEA)结构,即对应于R1=(0.321±0.002)nm的双角(DC)强吸附构型和R2=(0.360±0.002)nm的单角(SC)弱吸附构型.而且随着吸附量由9.79 mg·g-1增加至28.0 mg·g-1,吸附样品中双角构型配位数与单角构型配位数的比值(CN1/CN2)从3.3降低到1.6,说明双角亚稳平衡吸附结构在低覆盖度时占优势,而在高表面覆盖度时单角亚稳平衡吸附结构占优势,即在表面覆盖度较大时,As(Ⅴ)在TiO2表面上倾向于形成单角构型.  相似文献   

10.
采用傅里叶变换红外(FT-IR)光谱、X射线光电子能谱(XPS)以及基于周期平面波的密度泛函理论(DFT)分别研究了水杨酸钠在针铁矿或赤铁矿表面上的吸附结构,并将计算得到的光电子能谱移动(CLS)和电荷转移与实验得到的XPS结果进行对比。FT-IR结果表明,水杨酸钠可能以双齿双核(V)和双齿单核(IV)的形式分别吸附于针铁矿或赤铁矿表面。由DFT计算结果可知,水杨酸钠在针铁矿(101)晶面上形成双齿双核化合物(V)的吸附能为-5.46 eV。而水杨酸钠在针铁矿(101)晶面上形成双齿单核化合物(IV)的吸附能为3.80 eV,因此水杨酸钠在针铁矿上基本不以双齿单核化合物(IV)构型存在。水杨酸钠在赤铁矿(001)晶面上形成双齿单核化合物(IV)时吸附能为-4.07 eV,说明水杨酸钠在赤铁矿(001)晶面上形成了双齿单核化合物(IV)。另外,理论计算的针铁矿(101)晶面上吸附位点铁原子的Fe 2p的CLS值(-0.68 eV)与实验观察到的Fe 2p的CLS值(-0.5 eV)吻合。理论计算的赤铁矿(001)晶面上吸附位点铁原子的Fe 2p的CLS值(-0.80 eV)与实验观察到的Fe 2p的CLS值(-0.8 eV)吻合。因此,水杨酸钠吸附在针铁矿表面时能够通过羧酸基团上一个氧原子和酚羟基上的氧原子与针铁矿(101)表面上的两个铁原子形成双齿双核(V)结构,而在赤铁矿(001)表面上,水杨酸钠中羧酸基团上一个氧原子和酚羟基上的氧原子与赤铁矿(001)表面上的一个铁原子形成了双齿单核(IV)结构。  相似文献   

11.
采用傅里叶变换红外(FT-IR)光谱、X射线光电子能谱(XPS)以及基于周期平面波的密度泛函理论(DFT)分别研究了水杨酸钠在针铁矿或赤铁矿表面上的吸附结构,并将计算得到的光电子能谱移动(CLS)和电荷转移与实验得到的XPS结果进行对比。FT-IR结果表明,水杨酸钠可能以双齿双核(V)和双齿单核(IV)的形式分别吸附于针铁矿或赤铁矿表面。由DFT计算结果可知,水杨酸钠在针铁矿(101)晶面上形成双齿双核化合物(V)的吸附能为-5.46 e V。而水杨酸钠在针铁矿(101)晶面上形成双齿单核化合物(IV)的吸附能为3.80 e V,因此水杨酸钠在针铁矿上基本不以双齿单核化合物(IV)构型存在。水杨酸钠在赤铁矿(001)晶面上形成双齿单核化合物(IV)时吸附能为-4.07 e V,说明水杨酸钠在赤铁矿(001)晶面上形成了双齿单核化合物(IV)。另外,理论计算的针铁矿(101)晶面上吸附位点铁原子的Fe 2p的CLS值(-0.68 e V)与实验观察到的Fe 2p的CLS值(-0.5 e V)吻合。理论计算的赤铁矿(001)晶面上吸附位点铁原子的Fe 2p的CLS值(-0.80 e V)与实验观察到的Fe 2p的CLS值(-0.8 e V)吻合。因此,水杨酸钠吸附在针铁矿表面时能够通过羧酸基团上一个氧原子和酚羟基上的氧原子与针铁矿(101)表面上的两个铁原子形成双齿双核(V)结构,而在赤铁矿(001)表面上,水杨酸钠中羧酸基团上一个氧原子和酚羟基上的氧原子与赤铁矿(001)表面上的一个铁原子形成了双齿单核(IV)结构。  相似文献   

12.
孔结构对活性炭吸附水溶液中铅离子的影响   总被引:2,自引:0,他引:2  
选取三种表面化学性质相近的活性炭(AC),通过等温吸附实验考察活性炭对水溶液中铅离子的吸附性能,利用扫描电子显微镜(SEM)观察活性炭的表面微观形貌,通过低温(77 K)液氮吸附测定活性炭的比表面积和孔容,并分别以密度泛函理论(DFT)和Barrett-Joyner-Halenda (BJH)法计算微孔和中孔的孔径分布.结果表明:选用的三种活性炭AC1、AC2、AC3在比表面积和总孔容上呈依次下降的趋势,但表面开放孔均匀分布的AC2,具有最高的饱和吸附量,孔结构类似颗粒堆积孔的AC3,具有与表面开放孔分布集中的AC1相近的饱和吸附量;通过对孔结构与吸附量的关联分析可知,在活性炭吸附铅离子的过程中, 0.4-0.6 nm的孔是有效吸附孔, 10.5-20.6 nm、20.6-55.6 nm、5.2-10.5 nm三个区间的孔则会对吸附产生阻碍作用.  相似文献   

13.
以HF、HCl、H_2O和Na Ac溶液为调节剂合成了4种MOF-Fe样品,用X射线衍射(XRD)、透射电镜(TEM)、N_2等温吸附-脱附、综合热分析(TG/DTG和DTA)和质子电位滴定研究了4种样品的结构与表面性质,以及对亚硒酸根(Se(Ⅳ))等温吸附特性。MOF-Fe(HF)、MOF-Fe(HCl)、MOF-Fe(H_2O)和MOF-Fe(Na Ac)四种样品均具有八面体MIL-100(Fe)的晶体结构,但它们的结晶度和晶面取向略有差异。4种样品的比表面积分别为1 683、1 517、1 641和1 734 m~2·g~(-1),其总孔体积依次降低,微孔孔径分别为1.27、1.22、1.22和1.17 nm。MOF-Fe(HF)样品的脱羧基失重峰温度最高(415℃),苯环碳化失重峰温度最低(462℃);MOF-Fe(HCl)、MOF-Fe(H_2O)和MOF-Fe(Na Ac)样品出现了因氧化铁被碳还原所致的失重平台(566~716℃)。样品悬浮液从p H=6.0降到3.0时,消耗H~+的量表现为MOF-Fe(H_2O)MOF-Fe(HCl)MOF-Fe(HF)=MOF-Fe(Na Ac),它们的电荷零点(p H_(ZPC))依次为3.1、3.5、3.6和3.5。MOF-Fe(Na Ac)、MOF-Fe(HCl)、MOF-Fe(H_2O)和MOF-Fe(HF)对Se(Ⅳ)的吸附亲和力依次减小,它们对Se(Ⅳ)的吸附容量(Q_m)分别为77.69、107.07、117.40和87.15 mg·g~(-1)。显著性分析显示,MOF-Fe的羟基密度与样品吸附Se(Ⅳ)的Q_m显著正相关。研究结果表明,MOF-Fe样品的结构热稳定性和羟基/配位水分子等活性位点密度受合成样品时加入的调节剂影响,用HF作为调节剂合成MOF-Fe样品有利于提高样品中羧基与苯环之间的C-C键合强度和热分解产物的稳定性,降低苯环碳化温度;HCl和H_2O作为调节剂有利于提高样品的活性位点密度,可提高MOF-Fe样品对Se(Ⅳ)吸附容量。  相似文献   

14.
研究了XMg O·YMg(OH)2对水中氟离子的吸附性能,考察了吸附时间、吸附剂用量、含氟水p H值、温度、含氟水初始浓度等因素对吸附的影响。实验结果表明,在较宽的p H(3.4~8.4)值和水温(22~51℃)范围内,XMg O·YMg(OH)2对水中氟离子具有极强的吸附能力,室温下0.4g XMg O·YMg(OH)2可将100m L浓度为30mg F-1·L-1含氟水处理为符合含氟标准的饮用水。氟离子在XMg O·YMg(OH)2上的吸附速率较大,30min内基本达到吸附平衡,吸附平衡符合Langmuir方程,在50min内达到饱和吸附,室温下饱和吸附量为13.46mg·g-1。净化水呈微碱性,含有5.68~15.07mg·L-1Mg2+,有益于人体健康。吸附饱和后的XMg O·YMg(OH)2经焙烧再生,除氟率可达81%。  相似文献   

15.
以铅(Ⅱ)为印迹离子,以3-氨基丙基-三乙氧基硅烷为功能单体,用表面印迹技术在纳米TiO2/SiO2表面聚合形成铅(Ⅱ)印迹聚合物。试验结果表明:在静态吸附条件下,铅(Ⅱ)印迹聚合物对铅(Ⅱ)的吸附量为非印迹聚合物吸附量的3倍。控制富集的含铅(Ⅱ)样品溶液pH为4,体积最大为200mL,通过柱的流量为1.0mL·min-1。用电感耦合等离子体原子发射光谱法测定了洗脱液中的铅量。方法的检出限(3s)为0.09μg·L-1。以湖水样品为基体,用标准加入法做回收试验,测得回收率在95.6%~98.1%之间。应用所提出方法分析了2种国家一级标准物质,测得铅含量与认定值一致。  相似文献   

16.
通过化学沉淀法制备了CMS@La_2O_3磁性磷吸附剂。结构及磁性表征显示,氧化镧较均匀的包覆在粉煤灰磁珠表面;样品的比磁化强度达20.35 emu·g~(-1),可实现高效磁分离。利用钼酸铵分光光度法对所得磁性吸附剂的磷吸附性能进行了试验研究。研究表明,其最高磷比饱和吸附量可达19.50 mg·g~(-1),吸附时间、pH值、共存阴离子等因素对磷吸附效果均具有显著影响。吸附动力学拟合表明,CMS@La_2O_3对含磷离子的吸附符合准二级动力学方程,以化学吸附为主,磁性吸附剂对含磷离子的吸附反应过程可由La_2O_3表面羟基化-离子交换模型解释。吸附磷后的CMS@La_2O_3吸附剂经处理后可多次循环使用。  相似文献   

17.
以Fe Cl3·6H2O和CH3COOK为反应物,以离子液体1-丁基-3-甲基咪唑氯化物([Bmim]Cl)为结构导向剂和表面活性剂,采用水热合成法在150℃反应8 h制备出结晶度好、形貌规整,直径为10~30 nm的α-Fe2O3纳米微球.考察了[Bmim]Cl的添加量对氧化铁形貌和气敏性能的影响.气敏性能测试结果表明:当离子液体添加量为12 mmol时,α-Fe2O3纳米微球对乙醇的气敏性能最佳.在工作温度为300℃时,对50μL/L乙醇的灵敏度达到7.56,是不添加离子液体时制备的α-Fe2O3的5.6倍,在10~200μL/L的检测范围内灵敏度与浓度具有良好的线性关系(R=98.8%),并且具有良好的选择性和稳定性.本文还详细探讨了α-Fe2O3纳米微球对乙醇的敏感机理,以及工作温度对其气敏性能的影响.  相似文献   

18.
用延展X射线吸收精细结构(EXAFS)光谱和密度泛函理论(DFT)研究了As(V)-TiO2体系的吸附机理. 离子强度变化对As(V)-TiO2体系吸附无显著影响, 表明吸附后形成了内层络合物. EXAFS结果表明, As(V)原子主要通过—AsO4上的O原子结合到TiO2表面上, 平均As-O原子间距(R)在吸附前后无明显变化, 保持在(0.169±0.001) nm. As-Ti层的EXAFS分析结果与DFT计算的吸附构型的As-Ti原子间距对照表明, 体系存在两种主要亚稳平衡吸附(MEA)结构, 即对应于R1=(0.321±0.002) nm 的双角(DC)强吸附构型和R2=(0.360±0.002) nm的单角(SC)弱吸附构型. 而且随着吸附量由9.79 mg·g-1增加至28.0 mg·g-1, 吸附样品中双角构型配位数与单角构型配位数的比值(CN1/CN2)从3.3降低到1.6, 说明双角亚稳平衡吸附结构在低覆盖度时占优势, 而在高表面覆盖度时单角亚稳平衡吸附结构占优势, 即在表面覆盖度较大时, As(V)在TiO2表面上倾向于形成单角构型.  相似文献   

19.
以水热法制备的高磁饱和强度Fe_3O_4纳米颗粒为核,正硅酸乙酯(TEOS)为前驱体,采用改进的St觟ber法,制备介孔SiO_2包覆Fe_3O_4磁性核壳复合微球。利用XRD、SEM、TEM、N2吸附-脱附、FTIR和VSM对制备样品的物相结构、形貌和磁性能进行了测试表征。研究结果表明,制备的复合材料呈球形,粒径分布均一,材料的比表面积和磁饱和强度分别为413 m2·g-1和68.93emu·g-1。研究了TEOS的添加量对复合微球形貌的影响,随着TEOS添加量的增加,SiO_2壳层增厚,复合粒子形貌均匀,饱和磁化强度有所下降,仍具有良好的超顺磁性。在此基础上,通过接枝法在复合微球的表面接枝-NH2,制备了一种新型磁性纳米吸附剂(Fe_3O_4@SiO_2@m SiO_2-NH2),进而研究了其对水中重金属离子Cr(Ⅵ)的吸附性能。通过动力学拟合,Fe_3O_4@SiO_2@m SiO_2-NH2对Cr(Ⅵ)的吸附过程是准二级动力学模型占主导地位,探究了该材料对Cr(Ⅵ)的吸附过程和吸附机理。结果表明,其吸附机理及吸附容量与Cr(Ⅵ)的离子形态及-NH2有关,并通过吸附剂与吸附质之间的电子共用或静电吸附实现。  相似文献   

20.
Zn(Ⅱ)在TiO2表面上的微观吸附模式研究   总被引:1,自引:1,他引:0  
用延展X射线吸收精细结构(EXAFS)技术并结合密度泛函理论(DFT)研究了Zn(Ⅱ)在锐钛型TiO2表面上微观吸附结构。EXAFS结果表明, Zn(Ⅱ)在吸附时由自由水合状态下的Zn—O六配位八面体结构向四配位四面体结构转化, 中心Zn原子的第二配位层存在两种不同的Zn—Ti距离(R1=0.371和R2=0.332 nm). 用DFT方法对四配位水合Zn离子在簇Ti2O11H14上进行优化后发现, 四配位的Zn—O平均距离为0.200 nm; 外层Zn—Ti结合存在两种稳定的吸附模式: 单角吸附模式和更加稳定的双角吸附模式, 其Zn—Ti距离分别为0.369和0.335 nm. EXAFS结果与DFT计算结果吻合, 说明Zn(Ⅱ)在锐钛型TiO2表面上存在不同的亚稳平衡态吸附结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号