首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Hiding bits in bell states.   总被引:1,自引:0,他引:1  
We present a scheme for hiding bits in Bell states that is secure even when the sharers, Alice and Bob, are allowed to carry out local quantum operations and classical communication. We prove that the information that Alice and Bob can gain about a hidden bit is exponentially small in n, the number of qubits in each share, and can be made arbitrarily small for hiding multiple bits. We indicate an alternative efficient low-entanglement method for preparing the shared quantum states. We discuss how our scheme can be implemented using present-day quantum optics.  相似文献   

2.
Quantum secure direct communication is the direct communication of secret messages without need for establishing a shared secret key first. In the existing schemes, quantum secure direct communication is possible only when both parties are quantum. In this paper, we construct a three-step semiquantum secure direct communication (SQSDC) protocol based on single photon sources in which the sender Alice is classical. In a semiquantum protocol, a person is termed classical if he (she) can measure, prepare and send quantum states only with the fixed orthogonal quantum basis {|0〉, |1〉}. The security of the proposed SQSDC protocol is guaranteed by the complete robustness of semiquantum key distribution protocols and the unconditional security of classical one-time pad encryption. Therefore, the proposed SQSDC protocol is also completely robust. Complete robustness indicates that nonzero information acquired by an eavesdropper Eve on the secret message implies the nonzero probability that the legitimate participants can find errors on the bits tested by this protocol. In the proposed protocol, we suggest a method to check Eves disturbing in the doves returning phase such that Alice does not need to announce publicly any position or their coded bits value after the photons transmission is completed. Moreover, the proposed SQSDC protocol can be implemented with the existing techniques. Compared with many quantum secure direct communication protocols, the proposed SQSDC protocol has two merits: firstly the sender only needs classical capabilities; secondly to check Eves disturbing after the transmission of quantum states, no additional classical information is needed.  相似文献   

3.
刘志昊  陈汉武 《物理学报》2017,66(13):130304-130304
最近,一种基于Bell态粒子和单光子混合的量子安全直接通信方案[物理学报65 230301(2016)]被提出.文章宣称一个量子态可以编码3比特经典信息,从而使得协议具有很高的信息传输效率.不幸的是,该协议存在信息泄露问题:编码在单光子上的3比特经典信息有2比特被泄露,而编码在Bell态上的3比特经典信息有1比特被泄露,所以它不是一个安全的直接量子通信方案.在保留原协议思想且尽可能少地更改原协议的基础上,我们提出一种改进的消息编码规则,从而解决信息泄露问题,使之成为一个高效、安全的量子通信协议.衷心希望研究者能对量子安全通信协议中信息泄露问题引起足够重视,设计真正安全的量子通信协议.  相似文献   

4.
In present times, barcode decoders on mobile phones can extract the data content of QR codes. However, this convenience raises concerns about security issues when using QR codes to transmit confidential information, such as e-tickets, coupons, and other private data. Moreover, current secret hiding techniques are unsuitable for QR code applications since QR codes are module-oriented, which is different from the pixel-oriented hiding manner. In this article, we propose an algorithm to conceal confidential information by changing the modules of the QR Code. This new scheme designs the triple module groups based on the concept of the error correction capability. Additionally, this manner can conceal two secret bits by changing only one module, and the amount of hidden confidential information can be twice the original amount. As a result, the ordinary data content (such as URL) can be extracted correctly from the generated QR code by any barcode decoders, which does not affect the readability of scanning. Furthermore, only authorized users with the secret key can further extract the concealed confidential information. This designed scheme can provide secure and reliable applications for the QR system.  相似文献   

5.
梁建武  程资  石金晶  郭迎 《物理学报》2016,65(16):160301-160301
本文基于量子图态的几何结构特征,利用生成矩阵分割法,提出了一种量子秘密共享方案.利用量子图态基本物理性质中的稳定子实现信息转移的模式、秘密信息的可扩展性以及新型的组恢复协议,为安全的秘密共享协议提供了多重保障.更重要的是,方案针对生成矩阵的循环周期问题和因某些元素不存在本原元而不能构造生成矩阵的问题提出了有效的解决方案.在该方案中,利用经典信息与量子信息的对应关系提取经典信息,分发者根据矩阵分割理论获得子秘密集,然后将子秘密通过酉操作编码到量子图态中,并分发给参与者,最后依据该文提出的组恢复协议及图态相关理论得到秘密信息.理论分析表明,该方案具有较好的安全性及信息的可扩展性,适用于量子网络通信中的秘密共享,保护秘密数据并防止泄露.  相似文献   

6.
Feng Zhao  Mingxing Fu  Shaohua Wang 《Optik》2010,121(12):1053-1057
A scheme of quantum network based on multiuser differential phase shift quantum key distribution system (DPS-QKD) is proposed. In this quantum network, arbitrary two users can achieve secret bits sharing by point-to-multipoint quantum key distribution and secret bits comparison. A protocol of secret bits sharing between arbitrary two users is presented. This network can implement secret bits distribution over 200 km with higher key generation rate by today's technologies. In theory, the capacity of user numbers in this network is unlimited. Hence, our proposed quantum network can serve for a metropolitan QKD network. A wide area QKD network can be constructed with this metropolitan QKD network.  相似文献   

7.
Hamam H 《Optics letters》2010,35(24):4175-4177
A steganographic method offering a high hiding capacity is presented in which the techniques of digital holography are used to distribute information from a small secret image across the larger pixel field of a cover image. An iterative algorithm is used to design a phase-only or complex hologram from a padded version of the secret image, quantizing this data according to the carrier data bits that are available within the intended cover image. By introducing the hologram data only into low-order bits of larger amplitude cover pixels, the change in the cover image remains imperceptible to the casual observer, with a peak signal-to-noise ratio of >40 dB.  相似文献   

8.
In this paper, we firstly propose a new simple method to calculate entanglement swapping of χ-type entangled states, and then present a novel quantum steganography protocol with large payload. The new protocol adopts entanglement swapping to build up the hidden channel within quantum secure direct communication with χ-type entangled states for securely transmitting secret messages. Comparing with the previous quantum steganographies, the capacity of the hidden channel is much higher, which is increased to eight bits. Meanwhile, due to the quantum uncertainty theorem and the no-cloning theorem its imperceptibility is proved to be great in the analysis, and its security is also analyzed in detail, which is proved that intercept-resend attack, measurement-resend attack, ancilla attack, man-in-the-middle attack or even Dos(Denial of Service) attack couldn't threaten it. As a result, the protocol can be applied in various fields of quantum communication.  相似文献   

9.
We present a new post-processing method for Quantum Key Distribution (QKD) that raises cubically the secret key rate in the number of double matching detection events. In Shannon’s communication model, information is prepared at Alice’s side, and it is then intended to pass it over a noisy channel. In our approach, secret bits do not rely in Alice’s transmitted quantum bits but in Bob’s basis measurement choices. Therefore, measured bits are publicly revealed, while bases selections remain secret. Our method implements sifting, reconciliation, and amplification in a unique process, and it just requires a round iteration; no redundancy bits are sent, and there is no limit in the correctable error percentage. Moreover, this method can be implemented as a post-processing software into QKD technologies already in use.  相似文献   

10.
We consider a quantum system subject to superselection rules, for which certain restrictions apply to the quantum operations that can be implemented. It is shown how the notion of quantum nonlocality has to be redefined in the presence of superselection rules: there exist separable states that cannot be prepared locally and exhibit some form of nonlocality. Moreover, the notion of local distinguishability in the presence of classical communication has to be altered. This can be used to perform quantum information tasks that are otherwise impossible. In particular, this leads to the introduction of perfect quantum data hiding protocols, for which quantum communication (eventually in the form of a separable but nonlocal state) is needed to unlock the secret.  相似文献   

11.
The double-random phase-encoding (DRPE) technique is a typical optical image encryption technique, which can also be used for image hiding. Usually, the secret image is encrypted with the DRPE technique and the encoded image is hidden into the host image via superimposition to obtain the stego-image. The attack technique on the DRPE-based image hiding method was proposed in this paper. Firstly, a randomly selected superimposition coefficient was used to approximate the original superimposition coefficient to extract the hidden encoded images from the stego-images approximately. Then, the chosen-plaintext attack technique on the DRPE-based optical image encryption technique was applied to recover the random phase masks used in the DRPE technique. The theoretical analysis indicated that, without considering the computational error, the recovered secret image via the proposed attack technique is identical to the original one. Even considering the computational error, it is identical to the secret image recovered with the original DRPE-based image hiding method, which demonstrates that the attack on the DRPE-based image hiding method is successfully achieved. The numerical simulation results demonstrated the correctness of the theoretical analysis.  相似文献   

12.
A large payload quantum steganography protocol based on cavity quantum electrodynamics (QED) is presented in this paper, which effectively uses the evolutionary law of atoms in cavity QED. The protocol builds up a hidden channel to transmit secret messages using entanglement swapping between one GHZ state and one Bell state in cavity QED together with the Hadamard operation. The quantum steganography protocol is insensitive to cavity decay and the thermal field. The capacity, imperceptibility and security against eavesdropping are analyzed in detail in the protocol. It turns out that the protocol not only has good imperceptibility but also possesses good security against eavesdropping. In addition, its capacity for a hidden channel achieves five bits, larger than most of the previous quantum steganography protocols.  相似文献   

13.
We present a general technique for hiding a classical bit in multipartite quantum states. The hidden bit, encoded in the choice of one of two possible density operators, cannot be recovered by local operations and classical communication without quantum communication. The scheme remains secure if quantum communication is allowed between certain partners, and can be designed for any choice of quantum communication patterns to be secure, but to allow near perfect recovery for all other patterns. No entanglement is needed since the hiding states can be chosen to be separable. A single ebit of prior entanglement is not sufficient to break the scheme.  相似文献   

14.
具有双向认证功能的量子秘密共享方案   总被引:3,自引:0,他引:3       下载免费PDF全文
利用两粒子纠缠态作为经典信息的载体,结合Hash函数和量子本地操作提出了一种可以实现双向认证功能的量子秘密共享方案,并且分析了它的安全性. 这种方案的安全性基于秘密共享双方的认证密钥和传输过程中粒子排列次序的保密. 若不考虑认证和窃听检测所消耗的粒子,平均1个Bell态共享2 bit经典信息. 关键词: 量子秘密共享 认证密钥 量子双向认证 两粒子量子纠缠  相似文献   

15.
In 2018, Tseng et al. proposed a dual-image reversible embedding method based on the modified Least Significant Bit matching (LSB matching) method. This method improved on the dual-image LSB matching method proposed by Lu et al. In Lu et al.’s scheme, there are seven situations that cannot be restored and need to be modified. Furthermore, the scheme uses two pixels to conceal four secret bits. The maximum modification of each pixel, in Lu et al.’s scheme, is two. To decrease the modification, Tseng et al. use one pixel to embed two secret bits and allow the maximum modification to decrease from two to one such that the image quality can be improved. This study enhances Tseng et al.’s method by re-encoding the modified rule table based on the probability of each hiding combination. The scheme analyzes the frequency occurrence of each combination and sets the lowest modified codes to the highest frequency case to significantly reduce the amount of modification. Experimental results show that better image quality is obtained using our method under the same amount of hiding payload.  相似文献   

16.
Quantum secret sharing (QSS) and quantum search algorithm (QSA) are considered as two important but different research topics in quantum information science. This paper recognizes an important feature in the well-known Grover’s QSA and then applies it to propose a QSS protocol. In contrast to the existing QSA-based QSS protocols, the newly proposed protocol has the following two advantages: (1)?no quantum memory is required by the agents, whereas the agents in the existing QSA-based QSS protocols need long-term quantum memories to store their secret shadows; (2)?the agents can cooperate to recover the boss’s secret by using shadows in classical bits, whereas, the others have to combine their shadows in photons and perform a unitary operation on the retained photons. The proposed QSS protocol is also shown to be secure against eavesdroppers or malicious agents.  相似文献   

17.
邓晓冉  杨帅  闫凤利 《光子学报》2014,39(11):2083-2087
 为了高效实现多方之间的量子秘密共享,引入了一种纠缠度较高的N粒子纠缠态,并提出了利用该N粒子纠缠态在一方与(N-1)方之间形成共享秘密位串的方案.该方案在建立秘密位串的过程中,Alice对发送的粒子随机选择么正操作I和σx,并选择一部分粒子用于检测信道的安全|之后Alice根据(N-1)方选择的操作又选择了一部分粒子用于对参与者诚实度检测及信道安全检测.通过多次对窃听者的检测,很好地保证了信道的安全性及产生的秘密位串的可用性.最终在Alice及另外(N-1)方之间可形成n[1-(N-1)/2 N-1]/6个共享秘密位.  相似文献   

18.
In 2011, Qu et al. proposed a quantum information hiding protocol based on the entanglement swapping of χ-type quantum states. Because a χ-type state can be described by the 4-particle cat states which have good symmetry, the possible output results of the entanglement swapping between a given χ-type state and all of the 16 χ-type states are divided into 8 groups instead of 16 groups of different results when the global phase is not considered. So it is difficult to read out the secret messages since each result occurs twice in each line (column) of the secret messages encoding rule for the original protocol. In fact, a 3-bit instead of a 4-bit secret message can be encoded by performing two unitary transformations on 2 particles of a χ-type quantum state in the original protocol. To overcome this defect, we propose an improved quantum information hiding protocol based on the general term formulas of the entanglement swapping among χ-type states.  相似文献   

19.
In a recent paper Long et al. (J. Phys. A: Math. Theor. 45: 195303, 2012), a quantum secret sharing protocol was presented, in which the genuinely maximally entangled six-qubit states were used. According to the protocol, Alice could share three bits among three agents, which showed that it was more efficient than previous protocols. Here, we analyze it and point out that the information about the transmitted secret will be partly leaked out unknowingly. Through the classical public channel, 2/3 of Alice’s secret messages is leaked out to Bob1 and Bob2, and 1/3 secret messages is leaked out to Bob3, respectively. This phenomenon should be strictly forbidden in a quantum secret sharing protocol.  相似文献   

20.
In this paper, a quantum authencryption protocol is proposed by using the two-photon entangled states as the quantum resource. Two communicants Alice and Bob share two private keys in advance, which determine the generation of two-photon entangled states. The sender Alice sends the two-photon entangled state sequence encoded with her classical bits to the receiver Bob in the manner of one-step quantum transmission. Upon receiving the encoded quantum state sequence, Bob decodes out Alice’s classical bits with the two-photon joint measurements and authenticates the integrity of Alice’s secret with the help of one-way hash function. The proposed protocol only uses the one-step quantum transmission and needs neither a public discussion nor a trusted third party. As a result, the proposed protocol can be adapted to the case where the receiver is off-line, such as the quantum E-mail systems. Moreover, the proposed protocol provides the message authentication to one bit level with the help of one-way hash function and has an information-theoretical efficiency equal to 100 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号