首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The relationship between magnetostriction and structure of melt-spun Fes3Ga17 ribbons are investigated by XRD and M5ssbauer spectrum technique (MS). As the heat-treatment temperature increases from 650℃ to 800℃, the magnetostriction coefficient of Fes3Ga17 ribbon first increases and then decreases. The largest magnetostriction coeiffcient (-578.4 ppm) is achieved in those specimens quenched at 750oc. According to the XRD and MSssbauer spectrum anal- ysis, a small quantity of DO3 phase is precipitated in Fe83Ga17 ribbons when quenched from 650℃ and the DO3 phase is gradually transformed into B2-1ike phase if quenched at higher temperature. However, both DO3 and B2-1ike phases disappear when the temperature increases up to 800℃. From this point of view, B2-1ike phase might be beneficial to the enhancement of magnetostrictive properties of melt-spun ribbons.  相似文献   

2.
The columnar-grained structure induced by directional solidification was beneficial to improve the deformability of Fe83Ga17 alloy. Fe83Ga17 wires with diameter of 0.5∼0.9 mm were prepared successfully by hot rotary swaging and warm drawing from the directional solidified rods. The magnetostriction and microstructure of the as-drawn and the annealed Fe83Ga17 wires with diameter of 0.6 mm were investigated. Results demonstrated that the magnetostriction of Fe83Ga17 wires depended on the microstructure and the fiber texture, which were controlled by heat treatment process. The maximum magnetostriction of 160 ppm was detected in the annealed wire, which has the ideal <100> fiber texture. The phase mixture of A2 containing heterogeneous modified-DO3 phase has beneficial effect on magnetostriction.  相似文献   

3.
甩带Fe85Ga15合金的巨磁致伸缩研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用甩带快淬方法制备了Fe85Ga15合金样品.测量了样品在沿带片长度方向和厚度方向上的磁致伸缩,发现其值分别高达-1300ppm和+1100ppm.巨大磁致伸 缩的获得来源于甩带样品的形状各向异性和合金内部生成的大量短程应变有序以及它们的择优取向.样 品温度特性的测量表明,在室温附近约60℃宽的温度范围,合金的磁致伸缩数值基本保持不 变;而在高温条件下,合金具有更大的磁致伸缩. 关键词: 磁致伸缩 Fe-Ga合金 甩带快淬  相似文献   

4.
Structure, magnetization and magnetostriction of melt-spun Fe81Ga19 ribbons were investigated both before and after heat treatment. The matrix of melt-spun Fe81Ga19 ribbons kept a body-centered-cubic (bcc) structure (A2) at room temperature. [1 0 0] preferred orientation was formed during melt-spinning process and became stronger with the increase of the ribbon thickness. For the ribbons with a thickness of 110 μm, maximum saturation magnetostrictive strain of −189 ppm along ribbon length was obtained in the samples heat treated at 800 °C for 3 h and then quenched into water. This value was about 16% larger than that of melt-spun ones, which could be contributed to the single disordered A2 structure and the enhancement of [1 0 0]-oriented texture. However, when the ribbon samples were cooled at 2 and 0.5 °C/min after heat treatment at 800 °C for 3 h, a minor quantity of ordered D03 and L12 phase was found to precipitate in the A2 matrix, respectively, which resulted in the reduction of both magnetization and magnetostrictive strain.  相似文献   

5.
张辉  曾德长  刘仲武 《物理学报》2011,60(6):67503-067503
研究了Fe0.81Ga0.19合金单晶沿[100]方向的磁机械效应和磁致伸缩效应.基于Stoner-Wohlfarth模型,通过数值计算获得了在压应力和外磁场联合作用下磁化强度的方向余弦.研究表明,随着压应力的增加,退磁态下合金中的磁各向异性会由三轴各向异性向双轴各向异性转变.这使得合金中 90° 畴的体积分数增加,导致磁致伸缩效应增大. 关键词: FeGa合金 磁机械效应 巨磁致伸缩效应  相似文献   

6.
王智彬  刘敬华  蒋成保 《中国物理 B》2010,19(11):117801-117801
The effect of the orientation on the magnetostriction in Fe 81 Ga 19 alloy has been investigated experimentally and theoretically.The Fe 81 Ga 19 [001] and [110] oriented crystals were prepared and the magnetostriction was measured under different pre-stress.The saturation magnetostriction of the [001] oriented crystal increases from 170×10-6 to 330×10-6 under the pre-stress from 0 to 50 MPa.The [110] oriented crystal has a saturation magnetostriction from 20×10-6 to 140×10-6 with the compressive pre-stress from 0 to 40 MPa.The magnetostriction of [001] and [110] oriented crystals has been simulated based on the phenomenological theory.The domain rotation path has been determined and the resultant magnetostriction calculated under different pre-stress.The experimental and simulated results both show that the [001] oriented crystal exhibits better magnetostriction than [110] oriented crystal.The enhancement of the saturation magnetostriction by the compressive pre-stress in the [110] oriented crystal is higher than that in the [001] oriented crystal.  相似文献   

7.
Structural and magnetic properties of two rapidly solidified and post-annealed Fe60Pt15B25 and Fe60Pt25B15 alloys are compared. The as-quenched Fe60Pt15B25 ribbon was fully amorphous whereas in the Fe60Pt25B15 alloy the amorphous phase coexists with an fcc FePt disordered solid solution. Differential scanning calorimetry curves of both alloys reveal a single exothermal peak with onset temperatures of 873 and 847 K for Fe60Pt15B25 and Fe60Pt25B15, respectively. Magnetically hard, tetragonal ordered L10 FePt and magnetically soft Fe2B nanocrystalline phases were formed due to the annealing of the alloys, as indicated by X-ray diffraction and Mössbauer spectroscopy measurements. Two-phase behavior was detected in the temperature dependence of magnetization of the annealed samples. A magnetic hardening was observed for all annealed ribbons. Magnetic properties of the annealed alloys, studied by hysteresis loop measurements, were related to the differences in the relative fractions of the hard and soft magnetic phases calculated from Mössbauer spectra. The alloy with 25 at% Pt exhibits better hard magnetic properties (Hc=437 kA/m, Mr/Ms=0.74) than the alloy with smaller Pt content (Hc=270 kA/m, Mr/Ms=0.73) mainly due to the larger abundance of the ordered tetragonal FePt phase.  相似文献   

8.
In this work, we have investigated the room-temperature phase constitution of heat-treated Fe81Ga19 alloys cooled from 800 °C at different rates. Results show that at cooling rates in the range from 0.43 to 0.26 °C/min, in addition to the A2 matrix, an fcc phase also can be observed in Fe81Ga19 samples at room temperature. To investigate the precipitation of the fcc phase out of A2 matrix, a systematic study of phase constitution was carried out on the samples quenched from different temperatures during cooling from 800 °C at 0.32 °C/min, which reveals an anomalous phase transformation between A2 and fcc. Precipitation of the fcc phase from A2 matrix occurs at 500 °C and its volume fraction exhibits a sharp increase at 400 °C. However, it begins to dissolve when further decreasing the temperature and only a minor fcc phase can be retained at room temperature, which suggests that the fcc phase is metastable below 400 °C. Magnetic measurements indicate that the precipitation of fcc phase deteriorates the saturation magnetization of Fe81Ga19.  相似文献   

9.
High-resolution electron microscopy (HREM) reveals in the as-quenched Fe90Zr7B3 alloy the existence of medium range ordered (MRO) regions 1-2 nm in size. Transmission Mössbauer spectroscopy confirms that these regions are α-Fe MRO ones. Above the Curie point of the amorphous phase (TC=(257±2)K) they behave like non-interacting superparamagnetic particles with the magnetization decreasing linearly with the temperature. For these particles the average magnetic moment of 390μB and the average size of 1.7 nm, in excellent agreement with HREM observations, were estimated. The maximum of the isothermal magnetic entropy change at the maximum magnetizing field induction of 2 T occurs at the Curie temperature of the amorphous phase and equals to 1.05 Jkg−1 K−1. The magnetic entropy changes exhibit the linear dependence on the maximum magnetizing field induction in the range 0.5-2 T below, near and above TC. Such correlations are attributed to superparamagnetic behavior of α-Fe MRO regions.  相似文献   

10.
The effect of IIIA metal and transition metalT substitution for Fe on crystal structure, magnetostriction and spontaneous magnetostriction, anisotropy and spin reorientation of a series of polycrystalline Tb0.3 Dy0.7 (Fe0.9 T 0.1)1.95 (T=Mn, Fe, Co, B, Al, Ga) alloys at room temperature were investigated systematically. It was found that the primary phase of the Tb0.3 Dy0.7 (Fe0.9 T 0.1)1.95 alloys is the MgCu2-type cubic Laves phase structure for different substitution. The magnetostriction λ{ins} decrases greatly for the substitution of IIIA metal, B, Al and Ga, but is saturated more easily for Al and Ga substitution, showing that the Al and Ga substitution is beneficial to a decrease in the magnetocrystalline anisotropy of Tb0.3 Dy0.7 (Fe0.9 T 0.1)1.95 alloys. However, the substitution of transition metal Mn and Co decreases slightly the magnetostriction λ{ins}. It was also found that the effect of different substitutions on the spontaneous magnetostriction λ{in111} is distinct. The analysis of the M?ssbauer spectra indicates that the easy magnetization direction in the {110} plane deviates slightly from the main axis of symmetry for Al and Ga substitution, namely spin reorientation, but it does not change evidently for B, Mn and Co substitution.  相似文献   

11.
The effect of Al substitution for Fe on crystal structure, magnetostriction and spontaneous magnetostriction, anisotropy and spin reorientation of a series of polycrystalline Tb0.3Dy0.7(Fe1−x Alx)1.95 alloys (x = 0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.30, 0.35) at room temperature and 77 K was investigated systematically. It was found that the primary phase of Tb0.3Dy0.7(Fe1−x Alx)1.95 is the MgCu2-type cubic Laves phase structure when x < 0.4 and the lattice constant a of Tb0.3Dy0.7(Fe1−x Alx)1.95 increases approximately and monotonically with the increase of x. The substitution of Al leads to the fact that the magnetostriction λ inceases slightly in a low magnetic field (H ⩽ 40 kA/m), but decreases sharply and is easily close to saturation in a high applied field as x increases, showing that a small amount of Al substitution is beneficial to a decrease in the magnetocrystalline anisotropy. It was also found that the spontaneous magnetostriction λ 111 decreases greatly with x increasing. The analysis of the M?ssbauer spectra indicated that the easy magnetization direction in the {110} plane deviates slightly from the main axis of symmetry with the changes of composition and temperature, namely spin reorientation. A small amount of non-magnetic phase exists for x = 0.15 in Tb0.3Dy0.7(Fe1−x Alx)1.95 alloys and the alloys become paramagnetic for x > 0.15 at room temperature, but at 77 K the alloys still remain magnetic phase even for x = 0.2. At room temperature and 77 K, the hyperfine field decreases and the isomer shifts increase with Al concentration increasing.  相似文献   

12.
The structure, magnetic properties and magnetostriction of Fe81Ga19 thin films have been investigated by using X-ray diffraction analysis, scanning electron microscope (SEM), vibrating sample magnetometer and capacitive cantilever method. It was found that the grain size of as-deposited Fe81Ga19 thin films is 50–60 nm and the grain size increases with increase in the annealing temperature. The remanence ratio (Mr/Ms) of the thin films slowly decreases with increase in the annealing temperature. However, the coercivity of the thin films goes the opposite way with increase in the annealing temperature. A preferential orientation of the Fe81Ga19 thin film fabricated under an applied magnetic field exists along 〈1 0 0〉 direction due to the function of magnetic field during sputtering. An in-plane-induced anisotropy of the thin film is well formed by the applied magnetic field during the sputtering and the formation of in-plane-induced anisotropy results in 90° rotations of the magnetic domains during magnetization and in the increase of magnetostriction for the thin film.  相似文献   

13.
曹成成  范珏雯  朱力  孟洋  王寅岗 《物理学报》2017,66(16):167501-167501
研究了预退火时间对Fe_(80.8)B_(10)P_8Cu_(1.2)非晶合金微结构及磁性能的影响.穆斯堡尔谱研究表明:在660 K的预退火温度下,随着预退火时间的增加,Fe原子不断富集,非晶基体中的类Fe_3B化学短程有序结构向类Fe B结构转变,并且非晶基体中Fe第一近邻壳层中Cu原子的逐渐脱离以及Fe-P配位键数量的明显减少可间接表征CuP团簇的形成过程.同时,本研究通过调节预退火时间来调控非晶基体中CuP团簇和Fe团簇的数量,促进后续退火晶化过程中α-Fe纳米晶相的析出,并细化纳米晶尺寸,从而获得综合磁性能更加优异的非晶/纳米晶软磁合金.  相似文献   

14.
[Co83Fe17/Au/Co/Au]N sputter deposited multilayers displaying a giant magnetoresistance have been investigated. Complementary magnetic measurements were conducted in order to characterize a spin reorientation transition in Co83Fe17 layers sandwiched between Au spacers. The transition from a perpendicular magnetic anisotropy to easy-plane one takes place at the thickness of about 1 nm.  相似文献   

15.
Microstructure by X-ray diffraction and Mössbauer spectroscopy, and isothermal magnetic entropy changes in the bulk amorphous Fe60Co5Zr8Mo5W2B20 alloy in the as-quenched state and after annealing at 720 K for 15 min are studied. The as-cast and heat treated alloy is paramagnetic at room temperature. The quadrupole splitting distribution is unimodal after annealing indicating the more homogenous structure in comparison with that for the as-cast alloy. Curie temperature slightly increases after annealing from 265±2 K in the as-quenched state to 272±2 K and the alloy exhibits the second order magnetic phase transition. The maximum of isothermal magnetic entropy changes appears at the Curie points and is equal to 0.30 and 0.42 J/(kg·K) for the alloy in the as-quenched state and after annealing, respectively. In the paramagnetic region the material behaves as a Curie-Weiss paramagnet.  相似文献   

16.
The infrared (IR) and 57Fe-Mössbauer spectra of Fe3IIFe4III(AsO4)6 were recorded and analyzed on the basis of its structural characteristics. The IR spectrum presents a high complexity, showing an important number of bands and splittings, as a consequence of the presence of three structurally independent AsO43− groups. The analysis of the four quadrupole signals shown by the Mössbauer spectrum allowed to attain a detailed insight into the cation distribution over the available crystallographic sites. The alternating current susceptibility measurements indicate a paramagnetic to ferrimagnetic transition in the material at about 59 K.  相似文献   

17.
Single phase Mn5Ge3 ribbons were successfully synthesized by single roller melt-spinning method followed by an annealing procedure at 800 °C for 1 h. The magnetocaloric effect and transition order were investigated by dc magnetization measurement. A maximum entropy change of 4.92 J/kg K and a refrigerant capacity of 201.3 J/kg were observed at an external field change of 30 kOe. The Banerjee criterion was adopted to discriminate the order of the transition, indicating a second order transition. The calculated entropy changes were also obtained by Landau theory, which are in agreement with the experimental values at the temperature region above the Curie temperature. This phenomena implies a potential transition of the magnetic interaction in the vicinity of the Curie temperature. Universal behavior was also indicated in that all of the experimental entropy change curves collapse into one universal curve, which is consistent with the Banerjee criterion.  相似文献   

18.
戴耀东  何云  黄红波  邵挺  夏元复 《物理学报》2003,52(12):3020-3026
利用嵌入反应合成了有机-无机嵌入化合物Fe0.95PS3(MV)0.1 1(MV为1,1′- 二甲基-4,4′-联吡啶阳离子),对其结构和磁性进行了研究.x射线衍射数据表明,此嵌入化 合物的晶体结构仍为单斜晶系,空间群为C2/m,晶胞参数a=0.879 nm, b=0.944 nm, c=1.07 0 nm, β=114.76°.相对于纯FePS3, 层间距离增大0.33 nm.磁化率研究表明, 从室温降 到4.2 K 关键词: 嵌入化合物 Mssbauer谱 磁相互作用 分子磁体  相似文献   

19.
The effect of coupled magnetomechanical loading on magnetostriction and compressive strain of Fe-Ga alloys has been investigated. A shift from negative to positive magnetostriction was observed with increase in compressive stress on a Fe85Ga15 single crystal. Non-linear behavior of the compressive strain in different magnetic fields was observed during the compressive loading and unloading process. These phenomena can clearly be explained by a model based on the magnetic-domain-switching process. The Young's modulus can also be obtained from the measured stress-strain curves.  相似文献   

20.
X-ray diffraction (XRD) and Mössbauer spectroscopy were used to study the annealing of the Fe40Ni38Mo4B18 amorphous alloy. The samples were isothermally annealed in the 858–878 K temperature range several times. Two crystalline phases were observed in the annealed samples: FeNi3 and (Fe, Ni, Mo)23B6. Preliminary results indicate that assuming a linear relationship between the area under the main XRD peak associated with the FeNi3 phase and its volume fraction, this can be fitted to a Johnson–Mehl–Avrami equation with an exponent n close to 1.0. Mössbauer results show a broad magnetic hyperfine field distribution in as-received samples and, consistent with XRD results, a sextet attributed to precipitates of FeNi3 (Bhf=29.5 T) for long annealing times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号