共查询到20条相似文献,搜索用时 0 毫秒
1.
Citra Dewi Adryan Fristiohady Riezki Amalia Nur Kusaira Khairul Ikram Sugeng Ibrahim Muchtaridi Muchtaridi 《Molecules (Basel, Switzerland)》2022,27(12)
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, having a poor prognosis and rapid metastases. TNBC is characterized by the absence of estrogen, progesterone, and human epidermal growth receptor-2 (HER2) expressions and has a five-year survival rate. Compared to other breast cancer subtypes, TNBC patients only respond to conventional chemotherapies, and even then, with limited success. Shortages of chemotherapeutic medication can lead to resistance, pressured index therapy, non-selectivity, and severe adverse effects. Finding targeted treatments for TNBC is difficult owing to the various features of cancer. Hence, identifying the most effective molecular targets in TNBC pathogenesis is essential for predicting response to targeted therapies and preventing TNBC cell metastases. Nowadays, natural compounds have gained attention as TNBC treatments, and have offered new strategies for solving drug resistance. Here, we report a systematic review using the database from Pubmed, Science Direct, MDPI, BioScince, Springer, and Nature for articles screening from 2003 to 2022. This review analyzes relevant signaling pathways and the prospect of utilizing natural compounds as a therapeutic agent to improve TNBC treatments in the future. 相似文献
2.
Jiafeng Wang Jiale Wu Yinglong Han Jie Zhang Yu Lin Haijun Wang Jing Wang Jicheng Liu Ming Bu 《Molecules (Basel, Switzerland)》2021,26(21)
Two new series of betulin derivatives with semicarbazone (7a–g) or thiosemicarbazone (8a–g) groups at the C-28 position were synthesized. All compounds were evaluated for their in vitro cytotoxicities in human hepatocellular carcinoma cells (HepG2), human breast carcinoma cells (MCF-7), human lung carcinoma cells (A549), human colorectal cells (HCT-116) and normal human gastric epithelial cells (GES-1). Among these compounds, 8f displayed the most potent cytotoxicity with an IC50 value of 5.86 ± 0.61 μM against MCF-7 cells. Furthermore, the preliminary mechanism studies in MCF-7 cells showed that compound 8f could trigger the intracellular mitochondrial-mediated apoptosis pathway by losing MMP level, which was related with the upregulation of Bax, P53 and cytochrome c expression; the downregulation of Bcl-2 expression; activation of the expression levels of caspase-3, caspase-9, cleaved caspase-3 and cleaved caspase-9; and an increase in the amounts of intracellular reactive oxygen species. These results indicated that compound 8f may be used as a valuable skeleton structure for developing novel antitumor agents. 相似文献
3.
Ali Mohammad Pourbagher-Shahri Tahereh Farkhondeh Marjan Talebi Dalia M. Kopustinskiene Saeed Samarghandian Jurga Bernatoniene 《Molecules (Basel, Switzerland)》2021,26(15)
Nitric Oxide (NO) is a potent signaling molecule involved in the regulation of various cellular mechanisms and pathways under normal and pathological conditions. NO production, its effects, and its efficacy, are extremely sensitive to aging-related changes in the cells. Herein, we review the mechanisms of NO signaling in the cardiovascular system, central nervous system (CNS), reproduction system, as well as its effects on skin, kidneys, thyroid, muscles, and on the immune system during aging. The aging-related decline in NO levels and bioavailability is also discussed in this review. The decreased NO production by endothelial nitric oxide synthase (eNOS) was revealed in the aged cardiovascular system. In the CNS, the decline of the neuronal (n)NOS production of NO was related to the impairment of memory, sleep, and cognition. NO played an important role in the aging of oocytes and aged-induced erectile dysfunction. Aging downregulated NO signaling pathways in endothelial cells resulting in skin, kidney, thyroid, and muscle disorders. Putative therapeutic agents (natural/synthetic) affecting NO signaling mechanisms in the aging process are discussed in the present study. In summary, all of the studies reviewed demonstrate that NO plays a crucial role in the cellular aging processes. 相似文献
4.
Afshin Derakhshani Zeinab Rostami Hossein Safarpour Mahdi Abdoli Shadbad Niloufar Sadat Nourbakhsh Antonella Argentiero Sina Taefehshokr Neda Jalili Tabrizi Omid Kooshkaki Reza Vaezi Astamal Pankaj Kumar Singh Nima Taefehshokr Nazila Alizadeh Nicola Silvestris Behzad Baradaran 《Molecules (Basel, Switzerland)》2021,26(8)
Over the past decade, there have been remarkable advances in understanding the signaling pathways involved in cancer development. It is well-established that cancer is caused by the dysregulation of cellular pathways involved in proliferation, cell cycle, apoptosis, cell metabolism, migration, cell polarity, and differentiation. Besides, growing evidence indicates that extracellular matrix signaling, cell surface proteoglycans, and angiogenesis can contribute to cancer development. Given the genetic instability and vast intra-tumoral heterogeneity revealed by the single-cell sequencing of tumoral cells, the current approaches cannot eliminate the mutating cancer cells. Besides, the polyclonal expansion of tumor-infiltrated lymphocytes in response to tumoral neoantigens cannot elicit anti-tumoral immune responses due to the immunosuppressive tumor microenvironment. Nevertheless, the data from the single-cell sequencing of immune cells can provide valuable insights regarding the expression of inhibitory immune checkpoints/related signaling factors in immune cells, which can be used to select immune checkpoint inhibitors and adjust their dosage. Indeed, the integration of the data obtained from the single-cell sequencing of immune cells with immune checkpoint inhibitors can increase the response rate of immune checkpoint inhibitors, decrease the immune-related adverse events, and facilitate tumoral cell elimination. This study aims to review key pathways involved in tumor development and shed light on single-cell sequencing. It also intends to address the shortcomings of immune checkpoint inhibitors, i.e., their varied response rates among cancer patients and increased risk of autoimmunity development, via applying the data from the single-cell sequencing of immune cells. 相似文献
5.
Muhammad Naeem Muhammad Omer Iqbal Humaira Khan Muhammad Masood Ahmed Muhammad Farooq Muhammad Moeen Aadil Mohamad Ikhwan Jamaludin Abu Hazafa Wan-Chi Tsai 《Molecules (Basel, Switzerland)》2022,27(11)
Breast cancer (BC) is the second leading cause of death among women, and it has become a global health issue due to the increasing number of cases. Different treatment options, including radiotherapy, surgery, chemotherapy and anti-estrogen therapy, aromatase inhibitors, anti-angiogenesis drugs, and anthracyclines, are available for BC treatment. However, due to its high occurrence and disease progression, effective therapeutic options for metastatic BC are still lacking. Considering this scenario, there is an urgent need for an effective therapeutic strategy to meet the current challenges of BC. Natural products have been screened as anticancer agents as they are cost-effective, possess low toxicity and fewer side effects, and are considered alternative therapeutic options for BC therapy. Natural products showed anticancer activities against BC through the inhibition of angiogenesis, cell migrations, proliferations, and tumor growth; cell cycle arrest by inducing apoptosis and cell death, the downstream regulation of signaling pathways (such as Notch, NF-κB, PI3K/Akt/mTOR, MAPK/ERK, and NFAT-MDM2), and the regulation of EMT processes. Natural products also acted synergistically to overcome the drug resistance issue, thus improving their efficacy as an emerging therapeutic option for BC therapy. This review focused on the emerging roles of novel natural products and derived bioactive compounds as therapeutic agents against BC. The present review also discussed the mechanism of action through signaling pathways and the synergistic approach of natural compounds to improve their efficacy. We discussed the recent in vivo and in vitro studies for exploring the overexpression of oncogenes in the case of BC and the current status of newly discovered natural products in clinical investigations. 相似文献
6.
7.
8.
The reaction of a 1:1 mixture of (H(2)O)(5)Cr((16)O(2))(2+) and (H(2)O)(5)Cr((18)O(2))(2+) at pH 1 did not yield measurable amounts of (16)O(18)O. This result rules out a Russell-type mechanism (2(H(2)O)(5)CrO(2)(2+) --> 2(H(2)O)(5)CrO(2+) + O(2)) for the bimolecular decomposition reaction. Evidence is presented in support of unimolecular (S(H)1) and bimolecular (S(H)2) homolyses as initial steps in the decomposition of (H(2)O)(5)CrO(2)(2+) in strongly acidic solutions (pH = 1). In the pH range 4-5, (H(2)O)(5)CrO(2)(2+) undergoes hydrolysis-induced disproportionation to (H(2)O)(5)CrO(2)H(2+), Cr(H(2)O)(6)(3+) and O(2). The first step produces HO(2)(*)/O(2)(*)(-), which in further reaction with (H(2)O)(5)CrO(2)(2+) yields the observed products. 相似文献
9.
Chuansheng Yang Zhikai Mai Can Liu Shuanghong Yin Yantao Cai Chenglai Xia 《Molecules (Basel, Switzerland)》2022,27(11)
Drug resistance is still an obstacle in cancer therapy, leading to the failure of tumor treatment. The emergence of tumor drug resistance has always been a main concern of oncologists. Therefore, overcoming tumor drug resistance and looking for new strategies for tumor treatment is a major focus in the field of tumor research. Natural products serve as effective substances against drug resistance because of their diverse chemical structures and pharmacological effects. We reviewed the signaling pathways involved in the development of tumor drug resistance, including Epidermal growth factor receptor (EGFR), Renin-angiotensin system (Ras), Phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), Wnt, Notch, Transforming growth factor-beta (TGF-β), and their specific signaling pathway inhibitors derived from natural products. This can provide new ideas for the prevention of drug resistance in cancer therapy. 相似文献
10.
Pratibha Pandey Fahad Khan Faisal Abdulrahman Alzahrani Huda A. Qari Mohammad Oves 《Molecules (Basel, Switzerland)》2021,26(18)
Rutin has been well recognized for possessing numerous pharmacological and biological activities in several human cancer cells. This research has addressed the inhibitory potential of rutin against the Jab1 oncogene in SiHa cancer cells, which is known to inactivate various tumor suppressor proteins including p53 and p27. Further, the inhibitory efficacy of rutin via Jab1 expression modulation in cervical cancer has not been yet elucidated. Hence, we hypothesized that rutin could exhibit strong inhibitory efficacy against Jab1 and, thereby, induce significant growth arrest in SiHa cancer cells in a dose-dependent manner. In our study, the cytotoxic efficacy of rutin on the proliferation of a cervical cancer cell line (SiHa) was exhibited using MTT and LDH assays. The correlation between rutin and Jab1 mRNA expression was assessed by RT-PCR analysis and the associated events (a mechanism) with this downregulation were then explored via performing ROS assay, DAPI analysis, and expression analysis of apoptosis-associated signaling molecules such as Bax, Bcl-2, and Caspase-3 and -9 using qRT-PCR analysis. Results exhibit that rutin produces anticancer effects via inducing modulation in the expression of oncogenes as well as tumor suppressor genes. Further apoptosis induction, caspase activation, and ROS generation in rutin-treated SiHa cancer cells explain the cascade of events associated with Jab1 downregulation in SiHa cancer cells. Additionally, apoptosis induction was further confirmed by the FITC-Annexin V/PI double staining method. Altogether, our research supports the feasibility of developing rutin as one of the potent drug candidates in cervical cancer management via targeting one such crucial oncogene associated with cervical cancer progression. 相似文献
11.
12.
13.
Pelin Telkoparan-Akillilar Emiliano Panieri Dilek Cevik Sibel Suzen Luciano Saso 《Molecules (Basel, Switzerland)》2021,26(5)
Cancer is one of the most fatal diseases with an increasing incidence and mortality all over the world. Thus, there is an urgent need for novel therapies targeting major cancer-related pathways. Nuclear factor-erythroid 2-related factor 2 (NRF2) and its major negative modulator Kelch-like ECH-associated protein 1 (KEAP1) are main players of the cellular defense mechanisms against internal and external cell stressors. However, NRF2/KEAP1 signaling pathway is dysregulated in various cancers, thus promoting tumor cell survival and metastasis. In the present review, we discuss the mechanisms of normal and deregulated NRF2 signaling pathway focusing on its cancer-related functions. We further explore activators and inhibitors of this pathway as cancer targeting drug candidates in order to provide an extensive background on the subject. 相似文献
14.
Song Park Kyu-Sang Sim Yeop Hwangbo Sung-Jin Park Young-Jun Kim Jun-Ho Kim 《Molecules (Basel, Switzerland)》2022,27(13)
It has been shown that citrus flavanone naringenin and its prenyl derivative 8-prenylnaringenin (8-PN) possess various pharmacological activities in in vitro and in vivo models. Interestingly, it has been proposed that prenylation can enhance biological potentials, including the estrogen-like activities of flavonoids. The objective of this study was to investigate the anti-diabetic potential and molecular mechanism of 8-PN in streptozotocin (STZ)-induced insulin-deficient diabetic mice in comparison with naringenin reported to exhibit hypoglycemic effects. The oral administration of naringenin and 8-PN ameliorated impaired glucose homeostasis and islet dysfunction induced by STZ treatment. These protective effects were associated with the suppression of pancreatic β-cell apoptosis and inflammatory responses in mice. Moreover, both naringenin and 8-PN normalized STZ-induced insulin-signaling defects in skeletal muscles and apoptotic protein expression in the liver. Importantly, 8-PN increased the protein expression levels of estrogen receptor-α (ERα) in the pancreas and liver and of fibroblast growth factor 21 in the liver, suggesting that 8-PN could act as an ERα agonist in the regulation of glucose homeostasis. This study provides novel insights into the mechanisms underlying preventive effects of naringenin and 8-PN on the impairment of glucose homeostasis in insulin-deficient diabetic mice. 相似文献
15.
Dominika Sersenov Zdenko Machala Vanda Repisk Helena Gbelcov 《Molecules (Basel, Switzerland)》2021,26(14)
Plasma medicine is a new field focusing on biomedical and clinical applications of cold gas plasmas, including their anticancer effects. Cold plasmas can be applied directly or indirectly as plasma-activated liquids (PAL). The effects of plasma-activated cell growth medium (PAM) and plasma-activated phosphate buffered saline (PAPBS) were tested, using a plasma pen generating streamer corona discharge in ambient air, on different cancer cell lines (melanoma A375, glioblastoma LN229 and pancreatic cancer MiaPaCa-2) and normal cells (human dermal fibroblasts HDFa). The viability reduction and apoptosis induction were detected in all cancer cells after incubation in PAL. In melanoma cells we focused on detailed insights to the apoptotic pathways. The anticancer effects depend on the plasma treatment time or PAL concentration. The first 30 min of incubation in PAL were enough to start processes leading to cell death. In fibroblasts, no apoptosis induction was observed, and only PAPBS, activated for a longer time, slightly decreased their viability. Effects of PAM and PAPBS on cancer cells showed selectivity compared to normal fibroblasts, depending on correctly chosen activation time and PAL concentration, which is very promising for potential clinical applications. This selectivity effect of PAL is conceivably induced by plasma-generated hydrogen peroxide. 相似文献
16.
Pritam-Bhagwan Bhosale Preethi Vetrivel Sang-Eun Ha Hun-Hwan Kim Jeong-Doo Heo Chung-Kil Won Seong-Min Kim Gon-Sup Kim 《Molecules (Basel, Switzerland)》2021,26(9)
Iridin is a natural flavonoid found in Belamcanda chinensis documented for its broad spectrum of biological activities like antioxidant, antitumor, and antiproliferative effects. In the present study, we have investigated the antitumor potential of iridin in AGS gastric cancer cells. Iridin treatment decreases AGS cell growth and promotes G2/M phase cell cycle arrest by attenuating the expression of Cdc25C, CDK1, and Cyclin B1 proteins. Iridin-treatment also triggered apoptotic cell death in AGS cells, which was verified by cleaved Caspase-3 (Cl- Caspase-3) and poly ADP-ribose polymerase (PARP) protein expression. Further apoptotic cell death was confirmed by increased apoptotic cell death fraction shown in allophycocyanin (APC)/Annexin V and propidium iodide staining. Iridin also increased the expression of extrinsic apoptotic pathway proteins like Fas, FasL, and cleaved Caspase-8 in AGS cells. On the contrary, iridin-treated AGS cells did not show variations in proteins related to an intrinsic apoptotic pathway such as Bax and Bcl-xL. Besides, Iridin showed inhibition of PI3K/AKT signaling pathways by downregulation of (p-PI3K, p-AKT) proteins in AGS cells. In conclusion, these data suggest that iridin has anticancer potential by inhibiting PI3K/AKT pathway. It could be a basis for further drug design in gastric cancer treatment. 相似文献
17.
18.
María de la Concepción Matesanz María José Feito Cecilia Ramírez‐Santillán Rosa María Lozano Sandra Sánchez‐Salcedo Daniel Arcos María Vallet‐Regí María‐Teresa Portolés 《Macromolecular bioscience》2012,12(4):446-453
Therapeutic strategies for bone regeneration involve the selection of suitable biomaterials, growth factors, and cell types to mimic the cellular microenvironment where molecular and mechanical signals control the reconstruction of bone tissue. The immobilization of basic fibroblast growth factor (FGF‐2) on powdered silicon‐substituted hydroxyapatite (Si‐HA) allows to prepare a biofunctional biomaterial able to interact with bone cells in a very specific way. The biological activity of FGF‐2/Si‐HA, evaluated in Saos‐2 osteoblasts and MC3T3‐E1 preosteoblasts through the PLCγ and MAPK/ERK signal transduction pathways, shows that FGF‐2 immobilized on Si‐HA provides the right signals to cells stimulating crucial intracellular mechanisms of osteoblast proliferation and differentiation.
19.
Xing-Hua Li Feng-Ting Yin Xiao-Hang Zhou Ai-Hua Zhang Hui Sun Guang-Li Yan Xi-Jun Wang 《Molecules (Basel, Switzerland)》2022,27(10)
Ischemic stroke (IS) is a common neurological disorder associated with high disability rates and mortality rates. At present, recombinant tissue plasminogen activator (r-tPA) is the only US(FDA)-approved drug for IS. However, due to the narrow therapeutic window and risk of intracerebral hemorrhage, r-tPA is currently used in less than 5% of stroke patients. Natural compounds have been widely used in the treatment of IS in China and have a wide range of therapeutic effects on IS by regulating multiple targets and signaling pathways. The keywords “ischemia stroke, traditional Chinese Medicine, Chinese herbal medicine, natural compounds” were used to search the relevant literature in PubMed and other databases over the past five years. The results showed that JAK/STAT, NF-κB, MAPK, Notch, Nrf2, and PI3K/Akt are the key pathways, and SIRT1, MMP9, TLR4, HIF-α are the key targets for the natural compounds from traditional Chinese medicine in treating IS. This study aims to update and summarize the signaling pathways and targets of natural compounds in the treatment of IS, and provide a base of information for the future development of effective treatments for IS. 相似文献
20.
Ayesha Sadiqa Azhar Rasul Mudassir Hassan Salma Sultana Farhat Jabeen 《Molecules (Basel, Switzerland)》2022,27(18)
Targeting the serine biosynthesis pathway enzymes has turned up as a novel strategy for anti-cancer therapeutics. 3- Phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme that catalyzes the conversion of 3-Phosphoglyceric acid (3-PG) into 3-Phosphohydroxy pyruvate (3-PPyr) in the first step of serine synthesis pathway and perform a critical role in cancer progression. PHGDH has been reported to be overexpressed in different types of cancers and emerged as a novel target for cancer therapeutics. During this study, virtual screening tools were used for the identification of inhibitors of PHGDH. A library of phenolic compounds was docked against two binding sites of PHGDH using Molegro Virtual Docker (MVD) software. Out of 169 virtually tested compounds, Salvianolic acid C and Schizotenuin F possess good binding potential to co-factor binding site of PHGDH while Salvianolic acid I and Chicoric acid were identified as the best binding compounds toward the substrate binding site of PHGDH. The top selected compounds were evaluated for different physiochemical and ADMET properties, the obtained results showed that none of these hit compounds violated the Pfizer Rule and they possess acceptable ADMET profiles. Further, a commercially available hit compound, Chicoric acid, was evaluated for its anti-cancer potential against PHGDH-expressing gastric cancer cell lines (MGC-803 and SGC-7901) as well as cell lines with low expression of PHGDH (MCF-7 and MDA-MB2-31), which demonstrated that Chicoric acid possesses selective cytotoxicity toward PHGDH expressing cancer cell lines. Thus, this study has unveiled the potential of phenolic compounds, which could serve as novel candidates for the development of PHGDH inhibitors as anti-cancer agents. 相似文献