首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The adsorption isotherms of phenol were acquired by frontal analysis on six different reversed phase adsorbents from five different organic solvent solutions. The end-capped octadecyl columns only differed in the bonding density of the C(18) ligands. The inverse method was used to confirm the estimated isotherm parameters derived from the frontal experiments. The effect of the bonding density of the end-capped octadecyl bonded phase on the adsorption properties of phenol from different mobile phase compositions was investigated. The adsorption behavior of phenol has changed from Langmuir type to BET type with the change of the organic modifier and the bonding density of the adsorbent.  相似文献   

2.
Single component adsorption and desorption isotherms of phenol were measured on a high-efficiency Kromasil-C18 column (N = 15000 theoretical plates) with pure water as the mobile phase. Adsorption isotherm data were acquired by frontal analysis (FA) for seven plateau concentrations distributed over the whole accessible range of phenol concentration in pure water (5, 10, 15, 20, 25, 40, and 60 g/l). Desorption isotherm data were derived from the corresponding rear boundaries, using frontal analysis by characteristic points (FACP). A strong adsorption hysteresis was observed. The adsorption of phenol is apparently modeled by a S-shaped isotherm of the first kind while the desorption isotherm is described by a convex upward isotherm. The adsorption breakthrough curves could not be modeled correctly using the adsorption isotherm because of a strong dependence of the accessible free column volume on the phenol concentration in the mobile phase. It seems that retention in water depends on the extent to which the surface is wetted by the mobile phase, extent which is a function of the phenol concentration, and of the local pressure rate, which varies along the column, and on the initial state of the column. By contrast, the desorption profiles agree well with those calculated with the desorption isotherms using the ideal model, due to the high column efficiency. The isotherm model accounting best for the desorption isotherm data and the desorption profiles is the bi-Langmuir model. Its coefficients were calculated using appropriate weights in the fitting procedure. The evolution of the bi-Langmuir isotherm parameters with the initial equilibrium plateau concentration of phenol is discussed. The FACP results reported here are fully consistent with the adsorption data of phenol previously reported and measured by FA with various aqueous solutions of methanol as the mobile phase. They provide a general, empirical adsorption model of phenol that is valid between 0 and 65% of methanol in water.  相似文献   

3.
Using competitive frontal analysis, the binary adsorption isotherms of the enantiomers of 1-phenyl-l-propanol were measured on a microbore column packed with a chiral stationary phase based on cellulose tribenzoate. These measurements were carried out using only the racemic mixture. The experimental data were fitted to four different isotherm models: Langmuir, BiLangmuir, Langmuir-Freundlich and Tóth. The BiLangmuir and the Langmuir-Freundlich models accounted best for the competitive adsorption data. An excellent agreement between the experimental and the calculated overloaded band profiles for various samples of racemic mixture was obtained when the equilibrium dispersive model of chromatography was used together with the BiLangmuir competitive isotherm. The isotherm parameters measured under competitive conditions were used to calculate the overloaded band profiles of large samples of the pure S- and R-enantiomers, too. A satisfactory agreement between the experimental and calculated band profiles was observed when using in the computation the corresponding single component BiLangmuir isotherm derived from the binary isotherm previously determined. Thus oniy data derived from the racemic mixture are required for computer optimization of the preparative chromatography separation of the enantiomers.  相似文献   

4.
The single and the competitive equilibrium isotherms of nortriptyline and amytriptyline were acquired by frontal analysis (FA) on the C18- bonded discovery column, using a 28/72 (v/v) mixture of acetonitrile and water buffered with phosphate (20 mM, pH 2.70). The adsorption energy distributions (AED) of each compound were calculated from the raw adsorption data. Both the fitting of the adsorption data using multi-linear regression analysis and the AEDs are consistent with a trimodal isotherm model. The single-component isotherm data fit well to the tri-Langmuir isotherm model. The extension to a competitive two-component tri-Langmuir isotherm model based on the best parameters of the single-component isotherms does not account well for the breakthrough curves nor for the overloaded band profiles measured for mixtures of nortriptyline and amytriptyline. However, it was possible to derive adjusted parameters of a competitive tri-Langmuir model based on the fitting of the adsorption data obtained for these mixtures. A very good agreement was then found between the calculated and the experimental overloaded band profiles of all the mixtures injected.  相似文献   

5.
The adsorption data of propyl benzoate were acquired by frontal analysis (FA) on a Symmetry-C18 column, using a mixture of methanol (65%, v/v) and water as the mobile phase, at three different flow rates, 0.5, 1.0 and 2.0 mL/min. The exact flow rates Fv were measured by collecting the mobile phase in volumetric glasses (deltaFv / Fv < or = 0.2%). The extra-column volumes and the column hold-up volume were accurately measured at each flow rate by tracer injections. The detailed effect of the flow rate on the value of the amount adsorbed was investigated. The best isotherm model accounting for the adsorption data was the same BET isotherm model at all three flow rates. Only slight differences (always less than 5%) were found between the three different sets of isotherm parameters (saturation capacity, q(s), equilibrium constant on the adsorbent, b(s) and equilibrium constant on successive layers of propyl benzoate, bL). The reproducibility of the same isotherm parameters measured by the inverse method (IM) is less satisfactory, leading to R.S.D.s of up to 10%. A flow rate increase is systematically accompanied by a slight increase of the amount adsorbed. This phenomenon is consistent with the influence of the pressure on the equilibrium constant of adsorption due to the difference between the partial molar volumes of the solute and the adsorbate. The larger average pressure along the column that is required to achieve a larger flow rate causes a larger amount of solute to be adsorbed on the column at equilibrium. This result comforts the high sensitivity and versatility of the FA method for isotherm determination under any kind of situation.  相似文献   

6.
The adsorption behavior of proline under hydrophilic interaction chromatography conditions was investigated from six aqueous solutions of acetonitrile. Proline adsorption isotherms were recorded at each mobile phase composition by frontal analysis and inverse method. The BET model was found to be the best choice to describe the nonlinear behavior of proline adsorption under hydrophilic interaction chromatography conditions. The adsorption isotherm parameters were derived from two independent parameter estimation methods. The parameters derived from regression analysis of the frontal analysis data and from overloaded elution bands were found to be in good agreement with the excess isotherm of water. The mobile phase composition at which the maximum excess adsorption of water was observed corresponded to the maximum saturation capacity measured for proline.  相似文献   

7.
The interactions of 3-chloro-1-phenyl-propanol with a quinidine carbamate-bonded chiral stationary phase under NPLC conditions were studied by measuring the adsorption isotherm data of its enantiomers by frontal analysis, modeling these data with a suitable isotherm model, and comparing the experimental overloaded elution band profiles with those calculated with this isotherm and the equilibrium dispersive model of liquid chromatography. The affinity energy distribution was calculated from the adsorption isotherm data. The results show that the surface of the adsorbent is heterogeneous and exhibits a bimodal adsorption energy distribution. This fact is interpreted in terms of the presence of two different types of adsorption sites on the stationary phase, nonselective and enantioselective sites. Albeit the bi-Langmuir isotherm model successfully accounts for the single-component data corresponding to both enantiomers, the competitive bi-Langmuir isotherm model does not allow an accurate prediction of the overloaded band profiles of the racemic mixture. Thermodynamic data are drawn for explanation. Some aspects of the retention mechanism are discussed in the light of the data obtained.  相似文献   

8.
The equilibrium adsorption of three small basic proteins was measured on cation exchangers under various solution conditions and was used as the basis for developing a predictive approach for correlating adsorption behavior. A mechanistically based isotherm model is used to model the equilibrium adsorption so as to facilitate isotherm prediction using minimal experimental data. The model explicitly considers the contributions of protein-surface and protein-protein interactions, and decoupling them allows each to be correlated with different experimental measurements. Specifically, protein-surface interactions are related to chromatographic data in the form of the isocratic retention factor (k'), while protein-protein interactions are analyzed on the basis of high-coverage isotherm data on an arbitrary stationary phase. Analysis of experimental data within this framework reveals a high level of consistency. The model is also used to facilitate prediction of adsorption isotherms on other ion-exchange media using isotherms on one adsorbent.  相似文献   

9.
The single-component and competitive adsorption isotherms of the enantiomers of 3-chloro-1-phenyl-1-propanol were measured by frontal analysis. The stationary phase was a cellulose tribenzoate coated on silica, the mobile phase an n-hexane-ethyl acetate (95:5) solution. The adsorption data measured fitted well to the Langmuir isotherm model. The band profiles of single components and of their mixtures were calculated using the equilibrium-dispersive model. These profiles were found to match quite satisfactorily the experimental band profiles. However, the agreement between calculated and experimental band profiles was significantly improved when a more complex model taking into account the mass transfer kinetics was used. The mass transfer rate coefficients, k(f), for both single components were determined by using the transport-dispersive model of chromatography. The coefficients obtained were used to predict the band profiles of mixtures of the two enantiomers to good agreement.  相似文献   

10.
An interesting adsorption behavior of racemic methyl mandelate on a tris-(3,5-dimethylphenyl)carbamoyl cellulose chiral stationary phase was theoretically and experimentally investigated. The overloaded band of the more retained enantiomer had a peculiar shape indicating a type V adsorption isotherm whereas the overloaded band of the less retained enantiomer had a normal shape indicating a type I adsorption behavior. For a closer characterization of this separation, adsorption isotherms were determined and analyzed using an approach were Scatchard plots and adsorption energy distribution (AED) calculations are combined for a deeper analysis. It was found that the less retained enantiomer was best described by a Tóth adsorption isotherm while the second one was best described with a bi-Moreau adsorption isotherm. The latter model comprises non-ideal adsorbate-adsorbate interactions, providing an explanation to the non-ideal adsorption of the more retained enantiomer. Furthermore, the possibility of using the Moreau model as a local model for adsorption in AED calculations was evaluated using synthetically generated raw adsorption slope data. It was found that the AED accurately could predict the number of adsorption sites for the generated data. The adsorption behavior of both enantiomers was also studied at several different temperatures and found to be exothermic; i.e. the adsorbate-adsorbate interaction strength decreases with increasing temperature. Stochastic analysis of the adsorption process revealed that the average amount of adsorption/desorption events increases and the sojourn time decreases with increasing temperature.  相似文献   

11.
Adsorption isotherm data were acquired by frontal analysis for several low-molecular mass compounds (3-phenyl 1-propanol, 4-tert.-butylphenol, butylbenzene, and butyl benzoate) on a classical packed column and a monolithic column using methanol-water RP-HPLC conditions. These columns have similar characteristics (C18-bonded silica, close specific surface areas and bonding densities). In each case, the isotherm model best accounting for the data was the same on both columns. The solute polarity determines the class of this model. For the two -OH compounds it was a Langmuirian adsorption isotherm. The hydrocarbon data were best modeled by an anti-Langmuir convex-downward isotherm model. The adsorption data for the aromatic ester exhibited a nearly linear behavior, depending on the methanol concentration of the mobile phase. A slightly convex downward isotherm was obtained at high methanol concentrations while the best fitting was obtained with a liquid-solid extended multilayer B.E.T. isotherm model at low concentrations. The validation of these models is discussed in detail. In all cases, similar values of the adsorption-desorption constants were found, underlining the closeness of the adsorption energies on both columns. By contrast, the adsorption capacity of the monolithic column was found to be approximately 1.4 greater than that of the packed column in spite of the close values of the surface areas of the silica in both columns.  相似文献   

12.
Single-component adsorption isotherm data were acquired by frontal analysis (FA) for tryptophan on a C(18)-Kromasil packed column, using acetonitrile-water solutions of various compositions (2.5, 5, and 7.5% ACN+1% acetic acid) and at five different temperatures between 25 and 65 degrees C. The adsorption isotherm model accounting best for these data is the bi-Moreau model, showing that two types of adsorption sites coexist on the surface and that strong adsorbate-adsorbate interactions take place. Large concentration band profiles of tryptophan were obtained for the three mobile phase compositions, at five different temperatures and the best values of the adsorption isotherm coefficients were determined by the inverse method (IM) of chromatography. The advantages and drawbacks of using the FA and the IM for determining the coefficients of the adsorption isotherm of tryptophan under the experimental conditions selected are discussed. The results of the FA and IM measurements are in good agreement. Both indicate that the retention time of tryptophan decreases rapidly with increasing acetonitrile concentration in the mobile phase as well as the saturation capacities of the two types of adsorption sites, with the highest values of the two saturation capacities being found for the lowest ACN content and the lowest temperature. The adsorption constant on the low-energy sites decreases with increasing acetonitrile content and temperature. In contrast, the adsorption constant on the high-energy sites increases with increasing ACN content of the mobile phase but decreases with increasing temperature. The solute-solute interaction parameters for the low and the high-energy adsorption sites increase rapidly with increasing ACN concentration in the mobile phase and with increasing temperature.  相似文献   

13.
The excess isotherms of methanol and acetonitrile were measured on the series of C18 bonded phases. The measurements were done using the minor disturbance method. The goal of our work was to determine the influence of the temperature on the adsorption of two commonly used solvents. The influence on the mobile phase flow rate on the both organic solvent adsorption was also investigated. The effect of these two parameters was compared on the octadecyl packed columns with different coverage density and on the monolithic Chromolith column. Adsorption of both solvents decreases with the increase of the temperature. The increase of the pressure increases adsorption of methanol but decreases adsorption of acetonitrile.  相似文献   

14.
Colored effluents from textile industries are a problem in many rivers and waterways. Prediction of dye adsorption capacities is important in design considerations. The sorption of three basic dyes, namely Basic blue 3, Basic yellow 21, and Basic red 22, onto peat is reported. Equilibrium sorption isotherms have been measured for the three single-component systems. Equilibrium was achieved after 21 days. The experimental isotherm data were analyzed using Langmuir, Freundlich, Redlich-Peterson, Tempkin, and Toth isotherm equations. A detailed error analysis has been undertaken to investigate the effect of using different error criteria for the determination of the single-component isotherm parameters and hence obtain the best isotherm and isotherm parameters which describe the adsorption process. The linear transform model provided the highest R(2) regression coefficient with the Redlich-Peterson model. The Redlich-Peterson model also yielded the best fit to experimental data for all three dyes using the nonlinear error functions. An extended Langmuir model has been used to predict the isotherm data for the binary systems using the single component data. The correlation between theoretical and experimental data had only limited success due to competitive and interactive effects between the dyes and the dye-surface interactions.  相似文献   

15.
The thermodynamic interactions of two polymers, one Fmoc-L-Trp-imprinted (MIP), the other one an unimprinted reference (NIP), with the two Fmoc-tryptophan enantiomers were studied by frontal analysis, which allows accurate measurements of the adsorption isotherms. These isotherms were acquired at temperatures of 40, 50, 60, and 70 degrees C, for sample concentrations ranging between 0.005 and 40 mM. The mobile phase used was acetonitrile with one percent acetic acid as an organic modifier. Within the measured concentration ranges, the tri-Langmuir isotherm model accounts best for the isotherm data of both enantiomers on the MIP, the bi-Langmuir model for the isotherm data of Fmoc-L-Trp on the NIP. These isotherm models were selected using three independent processes: statistical tests on the results from regression of the isotherm data to different isotherm models; calculation of the affinity energy distribution from the raw isotherm data; comparison of the experimental and the calculated band profiles. The isotherm parameters obtained from these best selected isotherm models showed that the enantiomeric selectivity does not change significantly with temperature, while the affinity of the substrates for both the MIP and the NIP decrease considerably with increasing temperatures. These temperature effects on the binding performance of the MIP were clarified by considering the thermodynamic functions (i.e., the standard molar Gibbs free energy, the standard molar entropy of adsorption, and the standard molar enthalpy of adsorption) for each identified type of adsorption sites, derived from the Van't Hoff equation. This showed that the entropy of transfer of Fmoc-L-Trp from the mobile to the MIP stationary phase is the dominant driving force for the selective adsorption of Fmoc-L-Trp onto the enantioselective binding sites. This entropy does not change significantly with increasing temperatures from 40 to 70 degrees C.  相似文献   

16.
The inverse method of isotherm determination consists in calculating the numerical values of the coefficients of an isotherm model that give a set of chromatographic profiles in best possible agreement with the set of experimental profiles available. This method was applied to determine the adsorption isotherms of the 1-indanol enantiomers on a cellulose tribenzoate chiral stationary phase. Both single-component and competitive isotherms were determined by using no more than one or two overloaded band profiles. The isotherms determined from the overloaded band profiles agreed extremely well with the isotherms determined by frontal analysis. Several isotherm models were used and tested. The best-fit isotherm was selected by means of statistical evaluation of the results. The results show that the adsorption is best characterized with a model describing heterogeneous adsorption with bimodal adsorption energy distribution.  相似文献   

17.
With the calorimetric (adsorption heat versus coverage) curve also measured together with the adsorption isotherm, the simultaneous use of both curves showed that there were two phases of adsorption in the adsorption of methanol, dimethyl ether, ethene and propane in SAPO-34. The dual-site Langmuir equation gave good fits to the adsorption data to support the interpretation that a second (type 2) adsorption phase occurred in the high-pressure region in addition to a first (type 1) adsorption phase on the acid sites at lower pressures. Adsorption experiments and calculations using binary gas mixtures showed that due to the existence of two types of adsorption, the multicomponent Langmuir isotherm equation (Langmuir competitive adsorption model) calculated incorrect surface concentrations when the concentrations were high. In contrast, the ideal adsorbed solution theory (IAST) calculated correct surface concentrations in the adsorption of mixtures.  相似文献   

18.
The adsorption isotherms of CO2, CO, N2, CH4, Ar, and H2 on activated carbon and zeolite LiX were measured using a volumetric method. Equilibrium experiments were conducted at 293, 308, and 323 K and pressures up to 1.0 MPa. The adsorption isotherm and heat of adsorption were analyzed for two pressure regions of experimental data: pressures up to 0.1 MPa and up to 1.0 MPa. Each experimental isotherm was correlated by the Langmuir, Sips, Toth and temperature dependent Sips isotherm models, and the deviation of each model was evaluated. The Sips and Toth models showed smaller deviation from the experimental data of adsorbents than the Langmuir model. Isosteric heats of adsorption were calculated by the temperature dependent Sips model and are presented along with surface loading. From deviation analysis, it is recommended that the isotherm in the proper pressure range be used to appropriately design adsorptive processes.  相似文献   

19.
The adsorption isotherm was determined for phenol in methanol/water on a C-8 stationary phase using frontal analysis in staircase mode, assuming different total column porosities, from 1 to 87%. Each set of adsorption isotherm data, with a certain column porosity, was fitted to various adsorption models and the generated parameters were used to calculate overloaded elution band profiles that were compared with experiments. It was found that the bi-Langmuir model had an optimum fit for a porosity that corresponds well with the value found experimentally. The adsorption energy distribution (AED) calculations and error analysis confirmed a bimodal energy distribution. It was also found that band profiles can be accurately predicted with a quite arbitrary chosen porosity, under prerequisite that a wrong but flexible adsorption model is chosen instead of the correct one. The latter result is very useful for quick optimizations of preparative separations where the exact value of the column porosity is not available.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号