首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Treatment of the complex [U(Tren(TMS))(Cl)(THF)] [1, Tren(TMS) = N(CH(2)CH(2)NSiMe(3))(3)] with Me(3)SiI at room temperature afforded known crystalline [U(Tren(TMS))(I)(THF)] (2), which is reported as a new polymorph. Sublimation of 2 at 160 °C and 10(-6) mmHg afforded the solvent-free dimer complex [{U(Tren(TMS))(μ-I)}(2)] (3), which crystallizes in two polymorphic forms. During routine preparations of 1, an additional complex identified as [U(Cl)(5)(THF)][Li(THF)(4)] (4) was isolated in very low yield due to the presence of a slight excess of [U(Cl)(4)(THF)(3)] in one batch. Reaction of 1 with one equivalent of lithium dicyclohexylamide or bis(trimethylsilyl)amide gave the corresponding amide complexes [U(Tren(TMS))(NR(2))] (5, R = cyclohexyl; 6, R = trimethylsilyl), which both afforded the cationic, separated ion pair complex [U(Tren(TMS))(THF)(2)][BPh(4)] (7) following treatment of the respective amides with Et(3)NH·BPh(4). The analogous reaction of 5 with Et(3)NH·BAr(f)(4) [Ar(f) = C(6)H(3)-3,5-(CF(3))(2)] afforded, following addition of 1 to give a crystallizable compound, the cationic, separated ion pair complex [{U(Tren(TMS))(THF)}(2)(μ-Cl)][BAr(f)(4)] (8). Reaction of 7 with K[Mn(CO)(5)] or 5 or 6 with [HMn(CO)(5)] in THF afforded [U(Tren(TMS))(THF)(μ-OC)Mn(CO)(4)] (9); when these reactions were repeated in the presence of 1,2-dimethoxyethane (DME), the separated ion pair [U(Tren(TMS))(DME)][Mn(CO)(5)] (10) was isolated instead. Reaction of 5 with [HMn(CO)(5)] in toluene afforded [{U(Tren(TMS))(μ-OC)(2)Mn(CO)(3)}(2)] (11). Similarly, reaction of the cyclometalated complex [U{N(CH(2)CH(2)NSiMe(2)Bu(t))(2)(CH(2)CH(2)NSiMeBu(t)CH(2))}] with [HMn(CO)(5)] gave [{U(Tren(DMSB))(μ-OC)(2)Mn(CO)(3)}(2)] [12, Tren(DMSB) = N(CH(2)CH(2)NSiMe(2)Bu(t))(3)]. Attempts to prepare the manganocene derivative [U(Tren(TMS))MnCp(2)] from 7 and K[MnCp(2)] were unsuccessful and resulted in formation of [{U(Tren(TMS))}(2)(μ-O)] (13) and [MnCp(2)]. Complexes 3-13 have been characterized by X-ray crystallography, (1)H NMR spectroscopy, FTIR spectroscopy, Evans method magnetic moment, and CHN microanalyses.  相似文献   

2.
A modified tris(pyrazolylborate) ligand has been prepared in two steps. First, reaction of triisopropylborate with allylmagnesium bromide and further treatment with benzoyl chloride gave CH(2) = CHCH(2)B(O(i)Pr), which was then reacted with potassium pyrazolate and pyrazole to give the compound K[CH(2) = CHCH(2)Bpz(3)]. The new allyl-containing scorpionate anion of acts as a bi- or tri-dentate ligand, as shown by the mononuclear complexes [CH(2) = CHCH(2)Bpz(3)M(LL)] (M = Rh, LL = nbd, ; LL = tfb, ; LL = (CO)(PPh(3)), ; M = Ir, LL = cod, ), obtained from reactions of the chlorido-bridged dinuclear complexes [{M(mu-Cl)(LL)}(2)] with 2. Furthermore, the borate represents a key material to achieve the attachment of tris(pyrazolyl)borate groups to the peripheries of carbosilane dendrimers. Thus, the platinum-catalyzed hydrosilylation reactions of compound with the dendritic cores Si[(CH(2))(3)SiMe(2)H](4) (G(0)-(SiH)(4)), (G(1)-(SiH)(8)), and (G(2)-(SiH)(16)) gave the corresponding borate-containing dendrimers Si[(CH(2))(3)SiMe(2)(CH(2))(3)B(O(i)Pr)(2)](4) (G(0)-B(4)), Si[(CH(2))(3)SiMe{(CH(2))(3)SiMe(2)(CH(2))(3)B(O(i)Pr)(2)}(2)](4) (G(1)-B(8)), and Si[(CH(2))(3)SiMe{(CH(2))(3)SiMe[(CH(2))(3)SiMe(2)(CH(2))(3)B(O(i)Pr)(2)](2)}(2)](4) (G(2)-B(16)) selectively in the anti-Markovnikov direction. Further reactions of G(0)-B(4), G(1)-B(8) and G(2)-B(16) with potassium pyrazolate and pyrazole rendered the corresponding polyanionic dendrimers K(4)[Si{(CH(2))(3)SiMe(2)(CH(2))(3)Bpz(3)}(4)] (G(0)-(Bpz(3))(4)), G(1)-(Bpz(3))(8), and G(2)-(Bpz(3))(16), respectively, which contain 4, 8, and 16 tris(pyrazolyl)borate groups symmetrically located around the dendritic peripheries. These unusual polyanionic dendrimers are excellent scaffolds to support metal centres, as shown by the reactions of G(0)-(Bpz(3))(4), G(1)-(Bpz(3))(8), and G(2)-(Bpz(3))(16) with [{Rh(mu-Cl)(nbd)}(2)] to give the neutral rhodadendrimers [Si{(CH(2))(3)SiMe(2)(CH(2))(3)Bpz(3)Rh(nbd)}(4)] G(0)-(Bpz(3)Rh)(4), G(1)-(Bpz(3)Rh)(8) and G(2)-(Bpz(3)Rh)(16) as stable solids in excellent yields. Following this protocol, mixed rhodium/iridium metallodendrimers can be prepared.  相似文献   

3.
The diphosphine 2,4,6-(CH(3))(3)-3,5-(iPr(2)PCH(2))(2)C(6)OH (1) reacts with [OsCl(2)(PPh(3))(3)] in presence of an excess of triethylamine to yield the isomeric para-quinone methide derivatives [Os{4-(CH(2))-1-(O)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H)(PPh(3))] (2 and 3), which differ in the positions of the mutually trans hydride and chloride ligands. Complex 2 reacts with CO to afford the dicarbonyl species [Os{1-(O)-2,4,6-(CH(3))(3)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(CO)(2)] (4), which results from hydride insertion into the quinonic double bond. Protonation of 2 and 3 leads to the formation of the methylene arenium derivative [Os{4-(CH(2))-1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H)(PPh(3))][OSO(2)CF(3)] (5 a). The diphosphine 1 reacts with [OsCl(2)(PPh(3))(3)] at 100 degrees C under H(2) to afford [Os{1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H(2))(PPh(3))] (6), a PCP pincer complex resulting formally from C(sp(2))--C(sp(3)) cleavage of the C--CH(3) group in 1. C--C hydrogenolysis resulting in the same complex is achieved by heating 2 under H(2) pressure. Reaction of the diphosphine substrate with [OsCl(2)(PPh(3))(3)] under H(2) at lower temperature allows the observation of a methylene arenium derivative resulting from C--H activation, [Os{4-(CH(2))-1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(2)(H)] (7). This compound reacts with PPh(3) in toluene to afford the ionic derivative [Os{4-(CH(2))-1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H)(PPh(3))]Cl (5 b). X-ray diffraction studies have been carried out on compounds 2, 3, 4, 5 b, 6, and 7, which allows the study of the structural variations when going from methylene arenium to quinone methide derivatives.  相似文献   

4.
Anilido phosphinimino ancillary ligand H(2)L(1) reacted with one equivalent of rare earth metal trialkyl [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] (Ln=Y, Lu) to afford rare earth metal monoalkyl complexes [L(1)LnCH(2)Si(CH(3))(3)(THF)] (1 a: Ln=Y; 1 b: Ln=Lu). In this process, deprotonation of H(2)L(1) by one metal alkyl species was followed by intramolecular C--H activation of the phenyl group of the phosphine moiety to generate dianionic species L(1) with release of two equivalnts of tetramethylsilane. Ligand L(1) coordinates to Ln(3+) ions in a rare C,N,N tridentate mode. Complex l a reacted readily with two equivalents of 2,6-diisopropylaniline to give the corresponding bis-amido complex [(HL(1))LnY(NHC(6)H(3)iPr(2)-2,6)(2)] (2) selectively, that is, the C--H activation of the phenyl group is reversible. When 1 a was exposed to moisture, the hydrolyzed dimeric complex [{(HL(1))Y(OH)}(2)](OH)(2) (3) was isolated. Treatment of [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] with amino phosphine ligands HL(2-R) gave stable rare earth metal bis-alkyl complexes [(L(2-R))Ln{CH(2)Si(CH(3))(3)}(2)(thf)] (4 a: Ln=Y, R=Me; 4 b: Ln=Lu, R=Me; 4 c: Ln=Y, R=iPr; 4 d: Ln=Y, R=iPr) in high yields. No proton abstraction from the ligand was observed. Amination of 4 a and 4 c with 2,6-diisopropylaniline afforded the bis-amido counterparts [(L(2-R))Y(NHC(6)H(3)iPr(2)-2,6)(2)(thf)] (5 a: R=Me; 5 b: R=iPr). Complexes 1 a,b and 4 a-d initiated the ring-opening polymerization of d,l-lactide with high activity to give atactic polylactides.  相似文献   

5.
The protonolysis reaction of [Ln(AlMe(4))(3)] with various substituted cyclopentadienyl derivatives HCp(R) gives access to a series of half-sandwich complexes [Ln(AlMe(4))(2)(Cp(R))]. Whereas bis(tetramethylaluminate) complexes with [1,3-(Me(3)Si)(2)C(5)H(3)] and [C(5)Me(4)SiMe(3)] ancillary ligands form easily at ambient temperature for the entire Ln(III) cation size range (Ln=Lu, Y, Sm, Nd, La), exchange with the less reactive [1,2,4-(Me(3)C)(3)C(5)H(3)] was only obtained at elevated temperatures and for the larger metal centers Sm, Nd, and La. X-ray structure analyses of seven representative complexes of the type [Ln(AlMe(4))(2)(Cp(R))] reveal a similar distinct [AlMe(4)] coordination (one eta(2), one bent eta(2)). Treatment with Me(2)AlCl leads to [AlMe(4)] --> [Cl] exchange and, depending on the Al/Ln ratio and the Cp(R) ligand, varying amounts of partially and fully exchanged products [{Ln(AlMe(4))(mu-Cl)(Cp(R))}(2)] and [{Ln(mu-Cl)(2)(Cp(R))}(n)], respectively, have been identified. Complexes [{Y(AlMe(4))(mu-Cl)(C(5)Me(4)SiMe(3))}(2)] and [{Nd(AlMe(4))(mu-Cl){1,2,4-(Me(3)C)(3)C(5)H(2)}}(2)] have been characterized by X-ray structure analysis. All of the chlorinated half-sandwich complexes are inactive in isoprene polymerization. However, activation of the complexes [Ln(AlMe(4))(2)(Cp(R))] with boron-containing cocatalysts, such as [Ph(3)C][B(C(6)F(5))(4)], [PhNMe(2)H][B(C(6)F(5))(4)], or B(C(6)F(5))(3), produces initiators for the fabrication of trans-1,4-polyisoprene. The choice of rare-earth metal cation size, Cp(R) ancillary ligand, and type of boron cocatalyst crucially affects the polymerization performance, including activity, catalyst efficiency, living character, and polymer stereoregularity. The highest stereoselectivities were observed for the precatalyst/cocatalyst systems [La(AlMe(4))(2)(C(5)Me(4)SiMe(3))]/B(C(6)F(5))(3) (trans-1,4 content: 95.6 %, M(w)/M(n)=1.26) and [La(AlMe(4))(2)(C(5)Me(5))]/B(C(6)F(5))(3) (trans-1,4 content: 99.5 %, M(w)/M(n)=1.18).  相似文献   

6.
Facile synthetic routes have been developed that provide access to cationic and anionic water-soluble polyferrocenylsilane (PFS) polyelectrolytes with controlled molecular weight and narrow polydispersity. Living photolytic ring-opening polymerization of amino-functionalized [1]ferrocenophane (fc) monomers [fcSiMe{C[triple chemical bond]CCH(2)N(SiMe(2)CH(2))(2)}] (3), [fcSi{C[triple chemical bond]CCH(2)N(SiMe(2)CH(2))(2)}(2)] (10), [fcSiMe(C[triple chemical bond]CCH(2)NMe(2))] (14), and [fcSiMe(p-C(6)H(4)CH(2)NMe(2))] (20) yielded the corresponding polyferrocenylsilanes [(fcSiMe{C[triple chemical bond]CCH(2)N(SiMe(2)CH(2))(2)})(n)](5), [(fcSi{C[triple chemical bond]CCH(2)N(SiMe(2)CH(2))(2)}(2))(n)] (11), [{fcSiMe(C[triple chemical bond]CCH(2)NMe(2))}(n)] (15), and [{fcSiMe(p-C(6)H(4)CH(2)NMe(2))}(n)] (21) with controlled architectures. Further derivatization of 5, 15, and 21 generated water-soluble polyelectrolytes [(fcSiMe{C[triple chemical bond]CCH(2)N(CH(2)CH(2)CH(2)SO(3)Na)(2)})(n)] (6), [{fcSiMe(C[triple chemical bond]CCH(2)NMe(3)OSO(3)Me)}(n)] (7), and [{fcSiMe(p-C(6)H(4)CH(2)NMe(3)OSO(3)Me)}(n)] (22), respectively. The polyelectrolytes were readily soluble in water and NaCl aqueous solutions, with 6 and 22 exhibiting long-term stability in aqueous media. The PFS materials 6 and 22, have been utilized in the layer-by-layer (LbL) self-assembly of electrostatic superlattices. Our preliminary studies have indicated that films made from controlled low molecular-weight PFSs possess a considerably thinner bilayer thickness and higher refractive index than those made from PFSs that have an uncontrolled high molecular-weight. These results suggest that the structure and optical properties of LbL ultra-thin films can be tuned by varying polyelectrolyte chain length. The water-soluble low molecular weight PFSs are also useful materials for a range of applications including LbL self-assembly in highly confined spaces.  相似文献   

7.
The acid-base reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] with Cp'H gave the corresponding half-sandwich rare earth dialkyl complexes [(Cp')Ln(CH(2)SiMe(3))(2)(thf)] (1-Ln: Ln=Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; Cp'=C(5)Me(4)SiMe(3)) in 62-90% isolated yields. X-ray crystallographic studies revealed that all of these complexes adopt a similar overall structure, in spite of large difference in metal-ion size. In most cases, the hydrogenolysis of the dialkyl complexes in toluene gave the tetranuclear octahydride complexes [{(Cp')Ln(μ-H)(2)}(4)(thf)(x)] (2-Ln: Ln=Sc, x=0; Y, x=1; Er, x=1; Tm, x=1; Gd, x=1; Dy, x=1; Ho, x=1) as the only isolable product. However, in the case of Lu, a trinuclear pentahydride [(Cp')(2)Lu(3)(μ-H)(5)(μ-CH(2)SiMe(2)C(5)Me(4))(thf)(2)] (3), in which the C-H activation of a methyl group of the Me(3)Si unit on a Cp' ligand took place, was obtained as a major product (66% yield), in addition to the tetranuclear octahydride [{(Cp')Lu(μ-H)(2)}(4)(thf)] (2-Lu, 34%). The use of hexane instead of toluene as a solvent for the hydrogenolysis of 1-Lu led to formation of 2-Lu as a major product (85%), while a similar reaction in THF yielded 3 predominantly (90%). The tetranuclear octahydride complexes of early (larger) lanthanide metals [{Cp'Ln(μ-H)(2)}(4)(thf)(2)] (2, Ln=La, Ce, Pr, Nd, Sm) were obtained in 38-57% isolated yields by hydrogenolysis of the bis(aminobenzyl) species [Cp'Ln(CH(2)C(6)H(4)NMe(2)-o)(2)], which were generated in-situ by reaction of [Ln(CH(2)C(6)H(4)NMe(2)-o)(3)] with one equivalent of Cp'H. X-ray crystallographic studies showed that the fine structures of these hydride clusters are dependent on the size of the metal ions.  相似文献   

8.
A family of novel titanasiloxanes containing the structural unit {[Ti(eta(5)-C(5)Me(5))O](3)} were synthesized by hydron-transfer processes involving reactions with equimolecular amounts of mu(3)-alkylidyne derivatives [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu(3)-CR)] (R=H (1), Me (2)) and monosilanols, R(3)'Si(OH), silanediols, R(2)'Si(OH)(2), and the silanetriol tBuSi(OH)(3). Treatment of 1 and 2 with triorganosilanols (R'=Ph, iPr) in hexane affords the new metallasiloxane derivatives [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-CHR)(OSiR(3)')] (R=H, R'=Ph (3), iPr (4); R=Me, R'=Ph (5), iPr (6)). Analogous reactions with silanediols, (R'=Ph, iPr), give the cyclic titanasiloxanes [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-O(2)SiR'(2))(R)] (R=Me, R'=Ph (7), iPr (8); R=Et, R'=Ph (9), iPr (10)). Utilization of tBuSi(OH)(3) with 1 or 2 at room temperature produces the intermediate complexes [{Ti(eta(5)-C(5)Me(5)) (mu-O)}(3)(mu-O(2)Si(OH)tBu)(R)] (R=Me (11), Et(12)). Further heating of solutions of 11 or 12 affords the same compound with an adamantanoid structure, [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-O(3)SitBu)] (13) and methane or ethane elimination, respectively. The X-ray crystal structures of 3, 4, 6, 8, 10, 12, and 13 have been determined. To gain an insight into the mechanism of these reactions, DFT calculations have been performed on the incorporation of monosilanols to the model complex [{Ti(eta(5)-C(5)H(5))(mu-O)}(3)(mu(3)-CMe)] (2 H). The proposed mechanism consists of three steps: 1) hydron transfer from the silanol to one of the oxygen atoms of the Ti(3)O(3) ring, forming a titanasiloxane; 2) intramolecular hydron migration to the alkylidyne moiety; and 3) a mu-alkylidene ligand rotation to give the final product.  相似文献   

9.
The reaction of ScCl(3)(THF)(3) or YCl(3) in a 1:1 molar ratio under reflux for 8 h with [{Li(bdmpza)(H(2)O)}(4)] [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate], [{Li(bdmpzdta)(H(2)O)}(4)] [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate], and (Hbdmpze) [bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide] affords the corresponding complexes [MCl(2)(kappa(3)-bdmpzx)(THF)] (x = a, M = Sc (1), Y (2); x = dta, M = Sc (3), Y (4); x = e, M = Sc (5), Y (6)). However, when the reaction was carried out for 1 h under reflux between ScCl(3)(THF)(3) and [{Li(bdmpzdta)(H(2)O)}(4)], a new anionic complex [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) was obtained. Reaction of [{Li(bdmpza)(H(2)O)}(4)] with YCl(3) in a 2:1 molar ratio under reflux for 8 h gave the complex [YCl(kappa(3)-bdmpza)(2)] (8). The same reaction, but with the lithium compound [{Li(bdmpzdta)(H(2)O)}(4)], led to the formation of an anionic complex [Li(THF)(4)][YCl(3)(kappa(3)-bdmpzdta)] (9). The X-ray crystal structures of 7 and 9 were established. Finally, the addition of 1 equiv of [{Li(bdmpza)(H(2)O)}(4)] or [{Li(bdmpzdta)(H(2)O)}(4)] to a solution of YCl(3) in THF under reflux, followed by the addition of 1 equiv of 1,10-phenanthroline, resulted in the formation of the corresponding complexes [YCl(2)(kappa(3)-bdmpzx)(phen)] (x = a (10), x = dta (11)). These complexes are the first examples of group 3 metals stabilized by heteroscorpionate ligands. In addition, we have explored the reactivity of some of these complexes with alcohols and amides. For example, the direct reaction of [YCl(2)(kappa(3)-bdmpza)(THF)] (2) with several alcohols gave the alkoxide complexes [YCl(kappa(3)-bdmpza)(OR)] (R = Et (12), iPr (13)). Finally, the reaction between [ScCl(2)(kappa(3)-bdmpzdta)(THF)] (3) or [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) and LiN(SiMe(3))(2).Et(2)O in 1:1 and 1:2 molar ratios gave rise to the complexes [ScCl(kappa(3)-bdmpzdta){N(SiMe(3))(2)}] (14) and [Sc(kappa(3)-bdmpzdta){N(SiMe(3))(2)}(2)] (15), respectively.  相似文献   

10.
The reaction of phosphanido complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)(PPh(2))] [L = CO (1), CNXylyl (2)] with early transition metal halides in high oxidation states has been carried out. New bimetallic niobocene complexes [{Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)}(μ-PPh(2))(MCl(5))] [M = Nb, L = CO (3), L = CNXylyl (4); M = Ta, L = CO (5), L = CNXylyl (6)] have been successfully synthesized by the reaction with [MCl(5)](2) (M = Nb or Ta). In a similar way [{Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)}(μ-PPh(2))(MCl(4))] [M = Ti, L = CO (13), CNXylyl (14); M = Zr, L = CO (15), CNXylyl (16)] were synthesized using MCl(4) (M = Ti or Zr). Solutions of complexes 4-6 in chloroform produced new ionic derivatives [Nb(η(5)-C(5)H(4)SiMe(3))(2)(P(H)Ph(2))(L)] [MCl(6)] [M = Nb, L = CO (7), L = CNXylyl (8); M = Ta, L = CO (9), L = CNXylyl (10)]. Ionic complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(P(Cl)Ph(2))(L)] [NbCl(4)O(thf)] [L = CO (11), CNXylyl (12)] were formed from solutions in thf - rapidly in the case of 3 but more slowly for 4. New heterometallic complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)(μ-PPh(2)){(Ti(η(5)-C(5)R(5))Cl(3)}] [R = H, L = CO (17), CNXylyl (18); R = CH(3), L = CO (19), CNXylyl (20)] were synthesized by the reaction of 1 or 2 with [Ti(η(5)-C(5)R(5))Cl(3)] (R = H or CH(3)). All of these compounds were characterized by IR and multinuclear NMR spectroscopy, and the molecular structures of 9 and 12 were determined by single-crystal X-ray diffraction.  相似文献   

11.
Treatment of IrCl(3)x H(2)O with one equivalent of 4,4'-di-tert-butyl-2,2'-bipyridyl (dtbpy) in N,N-dimethylformamide (dmf) afforded [IrCl(3)(dmf)(dtbpy)] (1). Alkylation of 1 with Me(3)SiCH(2)MgCl resulted in C--Si cleavage of the Me(3)SiCH(2) group and formation of the Ir(III) silyl dialkyl compound [Ir(CH(2)SiMe(3))(dtbpy)(Me)(SiMe(3))] (2), which reacted with tBuNC to afford [Ir(tBuNC)(CH(2)SiMe(3))(dtbpy)(Me)(SiMe(3))] ([2(tBuNC)]). Reaction of 2 with phenylacetylene afforded dimeric [{Ir(C[triple chemical bond]CPh)(dtbpy)(SiMe(3))}(2)(mu-C[triple chemical bond]CPh)(2)] (3), in which the bridging PhC[triple chemical bond]C(-) ligands are bound to Ir in a mu-sigma:pi fashion. Alkylation of 1 with PhMe(2)CCH(2)MgCl afforded the cyclometalated compound [Ir(dtbpy)(CH(2)CMe(2)C(6)H(4))(2-C(6)H(4)CMe(3))] (4), which features an agostic interaction between the Ir center and the 2-tert-butylphenyl ligand. The cyclic voltammogram of 4 in CH(2)Cl(2) shows a reversible Ir(IV)-Ir(III) couple at about 0.02 V versus ferrocenium/ferrocene. Oxidation of 4 in CH(2)Cl(2) with silver triflate afforded an Ir(IV) species that exhibits an anisotropic electron paramagnetic resonance (EPR) signal in CH(2)Cl(2) glass at 4 K with g( parallel)=2.430 and g( perpendicular)=2.110. Protonation of 4 with HCl and p-toluenesulfonic acid (HOTs) afforded [{Ir(dtbpy)(CH(2)CMe(2)Ph)Cl}(2)(mu-Cl)(2)] (5) and [Ir(dtbpy)(CH(2)CMe(2)Ph)(OTs)(2)] (6), respectively. Reaction of 5 with Li[BEt(3)H] gave the cyclometalated complex [{Ir(dtbpy)(CH(2)CMe(2)C(6)H(4))}(2)(mu-Cl)(2)] (7). Reaction of 4 with tetracyanoethylene in refluxing toluene resulted in electrophilic substitution of the iridacycle by C(2)(CN)(3) with formation of [Ir(dtbpy)(CH(2)CMe(2)C(6)H(3){4-C(2)(CN)(3)})(2-C(6)H(4)CMe(3))] (8). Reaction of 4 with diethyl maleate in refluxing toluene gave the iridafuran compound [Ir(dtbpy)(CH(2)CMe(2)C(6)H(4)){kappa(2)(C,O)-C(CO(2)Et)CH(CO(2)Et)}] (9). Treatment of 9 with 2,6-dimethylphenyl isocyanide (xylNC) led to cleavage of the iridafuran ring and formation of [Ir(dtbpy)(CH(2)CMe(2)C(6)H(4)){C(CO(2)Et)CH(CO(2)Et)}(xylNC)] (10). Protonation of 9 with HBF(4) afforded the dinuclear neophyl complex [(Ir(dtbpy)(CH(2)CMe(2)Ph){kappa(2)(C,O)-C(CO(2)Et)CH(CO(2)Et)})(2)][BF(4)](2) (11). The solid-state structures of complexes 2-5 and 8-11 have been determined.  相似文献   

12.
The hybrid dibismuthines O(CH(2)CH(2)BiPh(2))(2) and MeN(CH(2)-2-C(6)H(4)BiPh(2))(2) react with [M(CO)(5)(thf)] (M = Cr or W) to form [{M(CO)(5)}(2){O(CH(2)CH(2)BiPh(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)BiPh(2))(2)}] containing bridging bidentate (Bi(2)) coordination. The unsymmetrical tertiary bismuthine complexes [M(CO)(5){BiPh(2)(o-C(6)H(4)OMe)}] are also described. Depending upon the molar ratio, the hybrid distibines O(CH(2)CH(2)SbMe(2))(2) and MeN(CH(2)-2-C(6)H(4)SbMe(2))(2) react with [M(CO)(5)(thf)] to give the pentacarbonyl complexes [{M(CO)(5)}(2){O(CH(2)CH(2)SbMe(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] or tetracarbonyls cis-[M(CO)(4){O(CH(2)CH(2)SbMe(2))(2)}] and cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}]. The latter can also be obtained from [Cr(CO)(4)(nbd)] or [W(CO)(4)(pip)(2)], and contain chelating bidentates (Sb(2)-coordinated) as determined crystallographically. S(CH(2)-2-C(6)H(4)SbMe(2))(2) coordinates as a tridentate (SSb(2)) in fac-[M(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Cr or Mo) and fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)]. Fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] contains NSb(2)-coordinated ligand in the solid state, but in solution a second species, Sb(2)-coordinated and with a κ(1)-CF(3)SO(3) replacing the coordinated amine is also evident. X-ray crystal structures were also determined for fac-[Cr(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}], fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] and fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] [CF(3)SO(3)]. Hypervalent N···Sb interactions are present in cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Mo or W), but absent for M = Cr.  相似文献   

13.
Inventing new wheels: reaction of [M(3)(CO)(12) ] (M=Ru, Os) with 4-RC(6)H(4)SH afforded [{M(S-4-RC(6)H(4))(2)(CO)(2)}(8)] (R=H; I) or [{M(S-4-RC(6)H(4))(2)(CO)(2)}(6)] (R=Me, iPr; II; see scheme), all of which have been structurally characterized. The octamers I are unique metal molecular wheels featuring skew-edge-shared octahedra with a central planar M(8) octagon. [{Ru(S-4-iPrC(6)H(4))(2)(CO)(2)}(6)] selectively binds a Cu(+) or Ag(+) ion to form [M'{Ru(S(4-iPr-C(6)H(4)))(2)(CO)(2)}(6)](+) (III).  相似文献   

14.
This paper describes the synthesis and selected reactions of a series of crystalline mono(beta-diiminato)yttrium chlorides , , , , , , and . The X-ray structure of each has been determined, as well as of [YCl()(2)] (), [Y()(2)OBu(t)] () and [Y{CH(SiMe(3))(2)}(thf)(mu-Cl)(2)Li(OEt(2))(2)(mu-Cl)](2) (). The N,N'-kappa(2)-beta-diiminato ligands were [{N(R)C(Me)}(2)CH](-) [R = C(6)H(4)Pr(i)-2 (); R = C(6)H(4)Bu(t)-2 (); R = C(6)H(3)Pr(i)(2)-2,6 ()], [{N(SiMe(3))C(Ph)}(2)CH)](-) () and [{N(C(6)H(3)Pr(i)(2)-2,6)C(H)}(2)CPh](-) (). Equivalent portions of Li[L(x)] and YCl(3) in Et(2)O under mild conditions yielded [Y(mu-Cl)(L(x))(mu-Cl)(2)Li(OEt(2))(2)](2) [L(x) = () or ()] and [Y(mu-Cl)()(mu-Cl)Li(OEt(2))(2)(mu-Cl)](2) () or its thf (instead of Et(2)O) equivalent . Each of the Li(OEt(2))(2)Cl(2) moieties is bonded in a terminal () or bridging () mode with respect to the two Y atoms; the difference is attributed to the greater steric demand of than or . Under slightly more forcing conditions, YCl(3) and Li() (via) gave the lithium-free complex [YCl(2)()(thf)(2)] (). Two isoleptic compounds and (having in place of in , and , respectively) were obtained from YCl(3) and an equivalent portion of K[] and Na[], respectively; under the same conditions using Na[], the unexpected product was [YCl()(2)] () (i.e. incorporating only one half of the YCl(3)). A further unusual outcome was in the formation of from and 2 Li[CH(SiMe(3))(2)]. Compound [Y(){N(H)C(6)H(3)Pr(i)(2)-2,6}(thf)(mu(3)-Cl)(2)K](2).4Et(2)O (), obtained from and K[N(H)C(6)H(3)Pr(i)(2)-2,6], is noteworthy among group 3 or lanthanide metal (M) compounds for containing MClKCl (M = Y) moieties.  相似文献   

15.
Although the pentacoordinated complex [Ir{(allyl)B(CH(2)PPh(2))(pz)(2)}(cod)] (1; pz=pyrazolyl, cod=1,5-cyclooctadiene), isolated from the reaction of [{Ir(mu-Cl)(cod)}(2)] with [Li(tmen)][B(allyl)(CH(2)PPh(2))- (pz)(2)] (tmen=N,N,N',N'-tetramethylethane-1,2-diamine), shows behavior similar to that of the related hydridotris(pyrazolyl)borate complex, the carbonyl derivatives behave in a quite different way. On carbonylation of 1, the metal--metal-bonded complex [(Ir{(allyl)B(CH(2)PPh(2))(pz)(2)}CO)(2)(mu-CO)] (2) that results has a single ketonic carbonyl bridge. This bridging carbonyl is labile such that upon treatment of 2 with PMe(3) the pentacoordinated Ir(I) complex [Ir(CO){(pz)B(eta(2)-CH(2)CH=CH(2))(CH(2)PPh(2))(pz)}(PMe(3))] (3) was isolated. Complex 3 shows a unique fac coordination of the hybrid ligand with the allyl group eta(2)-bonded to the metal in the equatorial plane of a distorted trigonal bipyramid with one pyrazolate group remaining uncoordinated. This unusual feature can be rationalized on the basis of the electron-rich nature of the metal center. The related complex [Ir(CO){(pz)B(eta(2)-CH(2)CH=CH(2))(CH(2)PPh(2))(pz)}(PPh(3))] (4) was found to exist in solution as a temperature-dependent equilibrium between the cis-pentacoordinated and trans square planar isomers with respect to the phosphorus donor atoms. Protonation of 3 with different acids is selective at the iridium center and gives the cationic hydrides [Ir{(allyl)B(CH(2)PPh(2))(pz)(2)}(CO)H(PMe(3))]X (X=BF(4) (5), MeCO(2) (6), and Cl (7)). Complex 7 further reacts with HCl to generate the unexpected product [Ir(CO)Cl{(Hpz)B(CH(2)PPh(2))(pz)CH(2)CH(Me)}(PMe(3))]Cl (9; Hpz=protonated pyrazolyl group) formed by the insertion of the hydride into the Ir-(eta(2)-allyl) bond. In contrast, protonation of complex 4 with HCl stops at the hydrido complex [Ir{(allyl)B(CH(2)PPh(2))(pz)(2)}(CO)H(PPh(3))]Cl (8). X-ray diffraction studies carried out on complexes 2, 3, and 9 show the versatility of the hybrid scorpionate ligand in its coordination.  相似文献   

16.
Complexes of the early lanthanides with the donor-functionalized alkoxide ligand mmp (Hmmp = HOCMe(2)CH(2)OMe, 1-methoxy-2-methylpropan-2-ol) are excellent precursors for Metal Organic Chemical Vapor Deposition (MOCVD) and Atomic Layer Deposition (ALD) of lanthanide oxides; however, their coordination chemistry, which is the subject of this paper, is rather complex. Precursors for MOCVD and ALD of lanthanide oxides are prepared by the reaction of [Ln{N(SiMe(3))(2)}(3)] with 3 equiv of the alcohol Hmmp in toluene in the presence of 1 equiv of tetraglyme and are indefinitely stable in solution. Reaction of [Ln{N(SiMe(3))(2)}(3)] with 3 equiv of Hmmp in the absence of stabilizing Lewis bases gives complex condensed products with empirical formula [{Ln(mmp)(3-n)}(2)O(n)]. These condensed products show poor volatility and are unsatisfactory precursors for MOCVD or ALD of oxides. The cluster complex [La(3)(mu(3),kappa(2)-mmp)(2)(mu(2),kappa(2)-mmp)(3)(mmp)(4)] has been prepared by careful reaction of [La{N(SiMe(3))(2)}(3)] with 4 equiv of Hmmp and has been characterized by single-crystal X-ray diffraction. Salt metathesis reactions using M(mmp) (M = Li or Na) are unreliable routes to [Ln(mmp)(3)]. Crystals of the heterometallic cluster complex [NaLa(3)(mu(3)-OH)(mu(3),kappa(2)-mmp)(2)(mu(2),kappa(2)-mmp)(4)(mmp)(3)] were isolated from the reaction of [La(NO(3))(3)(tetraglyme)] with 3 equiv of Na(mmp), and crystals of [Li(kappa(2)-Hmmp)Pr(mu(2),eta(2)-mmp)(4))LiCl] were isolated from the reaction of PrCl(3) with 3 equiv of Li(mmp); both of these complexes have been characterized by single-crystal X-ray diffraction.  相似文献   

17.
Lutetium alkyl complexes [Lu(L)(CH(2)SiMe(3))(THF)(n)], which contain a sulfur-linked bis(phenolato) ligand such as 2,2'-thiobis(6-tert-butyl-4-methylphenolate) (L=tbmp, 1) or 1,4-dithiabutanediyl-bis(6-tert-butyl-4-methylphenolate) (L=etbmp, 2), were isolated from the reaction of the lutetium tris(alkyl) complex [Lu(CH(2)SiMe(3))(3)(THF)(2)] with H(2)L. The monomeric structures of these complexes were confirmed by X-ray diffraction studies, showing distorted octahedral geometry around the metal centre. The reaction of [Lu(tbmp)(CH(2)SiMe(3))(THF)(2)] (1) with alcohols ROH (R=iPr, CHPh(2), CPh(3)) results in the formation of the corresponding alkoxide complexes [Lu(tbmp)(OR)(THF)(n)] (4-6). With PhSiH(3) hydride complexes [Lu(L)(mu-H)(THF)(n)](2) (L=tbmp, 7; etbmp, 8) have been prepared in moderate to good yields. They adopt a dimeric form in the solid state as revealed by the X-ray crystal structure of 7. The reactivity of the hydride complexes and their catalytic activity in the ring-opening polymerisation of L-lactide and the hydrosilylation of alkenes are also discussed.  相似文献   

18.
Titanium complexes with chelating alkoxide ligands [TiCp*(O(2)Bz)(OBzOH)] (1) and [TiCp*(Me)((OCH(2))(2)Py)] (2) were synthesised by reaction of [TiCp*Me(3)] (Cp*=eta(5)-C(5)Me(5)) with 2-hydroxybenzyl alcohol ((HO)(2)Bz) and 2,6-pyridinedimethanol ((HOCH(2))(2)Py), respectively. Complex 1 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) to yield the early-late heterobimetallic complexes [TiCp*(O(2)Bz)(2)M(cod)] [M=Rh (3), Ir (4)]. Carbon monoxide readily replaces the COD ligand in 3 to give the rhodium dicarbonyl derivative [TiCp*(O(2)Bz)(2)Rh(CO)(2)] (5). Compound 2 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) with protonolysis of a Tibond;Me bond to give [TiCp*((OCH(2))(2)Py)(mu-O)M(cod)] [M=Rh (6), Ir (7)]. The molecular structures of complexes 3, 5 and 7 were established by single-crystal X-ray diffraction studies.  相似文献   

19.
Reduction at ambient temperature of each of the lithium benzamidinates [Li(L(1))(tmeda)] or [{Li(L(2))(OEt(2))(2)}(2)] with four equivalents of lithium metal in diethyl ether or thf furnished the brown crystalline [Li(3)(L(1))(tmeda)] (1) or [Li(thf)(4)][Li(5)(L(2))(2)(OEt(2))(2)] (2), respectively. Their structures show that in each the [N(R(1))C(R(3))NR(2)](3-) moiety has the three negative charges largely localised on each of N, N' and R = Aryl); a consequence is that the "aromatic" 2,3- and 5,6-CC bonds of R(3) approximate to being double bonds. Multinuclear NMR spectra in C(6)D(6) and C(7)D(8) show that 1 and 2 exhibit dynamic behaviour. [The following abbreviations are used: L(1) = N(SiMe(3))C(Ph)N(SiMe(3)); L(2) = N(SiMe(3))C(C(6)H(4)Me-4)N(Ph); tmeda = (Me(2)NCH(2)-)(2); thf = tetrahydrofuran.] This reduction is further supported by a DFT analysis.  相似文献   

20.
Reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] (Ln=Y, Yb, and Lu) with one equivalent of Me(2)Si(C(5)Me(4)H)NHR' (R'=Ph, 2,4,6-Me(3)C(6)H(2), tBu) affords straightforwardly the corresponding half-sandwich rare-earth metal alkyl complexes [{Me(2)Si(C(5)Me(4))(NR')}Ln(CH(2)SiMe(3))(thf)(n)] (1: Ln = Y, R' = Ph, n=2; 2: Ln = Y, R' = C(6)H(2)Me(3)-2,4,6, n=1; 3: Ln = Y, R' = tBu, n=1; 4: Ln = Yb, R' = Ph, n=2; 5: Ln = Lu, R' = Ph, n=2) in high yields. These complexes, especially the yttrium complexes 1-3, serve as excellent catalyst precursors for the catalytic addition of various primary and secondary amines to carbodiimides, efficiently yielding a series of guanidine derivatives with a wide range of substituents on the nitrogen atoms. Functional groups such as C[triple chemical bond]N, C[triple chemical bond]CH, and aromatic C--X (X: F, Cl, Br, I) bonds can survive the catalytic reaction conditions. A primary amino group can be distinguished from a secondary one by the catalyst system, and therefore, the reaction of 1,2,3,4-tetrahydro-5-aminoisoquinoline with iPrN==C==NiPr can be achieved stepwise first at the primary amino group to selectively give the monoguanidine 38, and then at the cyclic secondary amino unit to give the biguanidine 39. Some key reaction intermediates or true catalyst species, such as the amido complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y(NEt(2))(thf)(2)] (40) and [{Me(2)Si(C(5)Me(4))(NPh)}Y(NHC(6)H(4)Br-4)(thf)(2)] (42), and the guanidinate complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrNC(NEt(2))(NiPr)}(thf)] (41) and [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrN}C(NC(6)H(4)Br-4)(NHiPr)}(thf)] (44) have been isolated and structurally characterized. Reactivity studies on these complexes suggest that the present catalytic formation of a guanidine compound proceeds mechanistically through nucleophilic addition of an amido species, formed by acid-base reaction between a rare-earth metal alkyl bond and an amine N--H bond, to a carbodiimide, followed by amine protonolysis of the resultant guanidinate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号