首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facile and green route was introduced to synthesize Au nanoparticles immobilized on halloysite nanotubes (AuNPs/HNTs) used for surface-enhanced Raman scattering substrates. The naturally occurring HNTs were firstly functionalized with a large amount of -NH(2) groups by N-(β-aminoethyl)-γ-aminopropyl trimethoxysilane (AEAPTES), which possesses one lone electron pair and will "anchor" Au ions to form a chelate complex. Then, with the addition of tea polyphenols (TP), the Au ions were reduced on the surface of the previously formed Au-NH(2) chelate complex to form AuNPs. Transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM) observations indicate that a large amount of AuNPs were synthesized on HNTs. The AuNPs are irregularly spherical and densely dispersed on HNTs and the diameter of the nanoparticles varies from 20 to 40 nm. The interactions between AuNPs and -NH(2) groups were verified by X-ray photoelectron spectroscopy (XPS) and the results showed that the functional groups can "anchor" AuNPs through the chelating effect. The as-prepared AuNPs/HNTs nanomaterials with several nanometers gaps among nanoparticles were used as a unique surface-enhanced Raman scattering substrate, which possessed strong and distinctive Raman signals for R6G, indicating the remarkable enhancement effect of the AuNPs/HNTs.  相似文献   

2.
A new surface-enhanced Raman scattering (SERS) system of carbon nanotubes (CNTs) is reported for the first time. According to the remarkable mechanical property, CNTs were grinded on a sheet of silver directly. Thus rough silver surface was obtained, at the same time, the CNTs attached to the rough silver surface. High quality SERS spectra were obtained from CNTs attached to the rough silver surface. Because there were no solvents affecting the SERS of CNTs, the dependability of the result is improved. The theory and experiment results indicate that this is an accurate and practicable method for SERS study of CNTs.  相似文献   

3.
Convective assembly of bacteria for surface-enhanced Raman scattering   总被引:1,自引:0,他引:1  
A sample preparation method based on convective assembly for "whole-microorganism" identification using surface-enhanced Raman scattering (SERS) is developed. With this technique, a uniform sample can easily be prepared with silver nanoparticles. During the deposition process, bacteria and nanoparticles are assembled to form a unique well-ordered structure with great reproducibility. The SERS spectra acquired from the samples prepared with this technique have better quality and improved reproducibility for SERS spectra obtained from the same sample and limited variation due to the consistent sample preparation. E. coli, a Gram-negative bacilli, and Staphylococcus cohnii, a Gram-positive coccus, are studied as model bacteria.  相似文献   

4.
Ag-graphene composite nanosheets (AGCN) with adjustable size and well-controlled densities of Ag nanoparticles (Ag NPs) using Poly(N-vinyl-2-pyrrolidone) (PVP) as a reductant and stabilizer are reported. The obtained AGCN substrate is extremely suitable for surface-enhanced Raman spectroscopy (SERS).  相似文献   

5.
The flower-like silver nanoparticles have been synthesized by reducing silver nitrate (AgNO3) with ascorbic acid (AA) as the reductant and polyvinyl pyrrolidone (PVP) as the capping agent under vigorous stirring. Such flower-like nanoparticles are aggregates of small nanoplates and nanorods. They were tested as substrates for the surface-enhanced Raman scattering (SERS), showing high sensitivity for detecting Rhodamine 6G (R6G) at a concentration as low as 10-7 mol/L. It has been found that replacing mechanical stirring with ultrasound sonication would drastically change the particle morphology, from flower-like nanoparticles to well-dispersed smaller nanoparticles. Furthermore, when trace amounts of NaCl were added into the reagents, well-dispersed Ag nanoparticles formed even in vigorous stirring. These phenomena can be explained with the diffusion and reactant supply during nucleation and growth of Ag nanoparticles.  相似文献   

6.
Lipid-encapsulated surface-enhanced Raman scattering (SERS) nanoparticles, with promising applications in biomedical diagnostics, were produced. Gold nanoparticles, 60 nm in diameter, were coated with a ternary mixture of DOPC, sphingomyelin, and cholesterol. The lipid layer is versatile for engineering the chemical and optical properties of the particles. The stability of the lipid-encapsulated particles is demonstrated over a period of weeks. The versatility of the layer is demonstrated by the incorporation of three different Raman-active species using three different strategies. The lipid layer was directly observed by TEM, and the SERS spectrum of the three dye species was confirmed by Raman spectroscopy. UV-vis absorption and dynamic light scattering provide additional evidence of lipid encapsulation. The encapsulation is achieved in aqueous solution, avoiding phase transfer and possible contamination from organic solvents. Furthermore, when fluorescent dye-labeled lipids were employed in the encapsulant, the fluorescence and SERS activity of the particles were controlled by the use of dissolved ions in the preparation solution.  相似文献   

7.
We introduce a novel voltammetric method, so-called sinusoidal envelope voltammetry, for use in electronic tongues. Fourier transformation was used to transform the data of the signal from the time domain to the frequency domain. The four taste substances, acesulfame potassium, monosodium glutamate, potassium chloride and tartaric acid, are shown to exhibit abundant frequency characteristics in the power spectrum of a Fourier transformation. This indicates that the power spectrum from sinusoidal envelope voltammetry can be used as fingerprints of samples for classification. Principal component analysis along with discrimination index and multi-frequency large amplitude pulse voltammetry as a reference technique is used to evaluate the separation ability of sinusoidal envelope voltammetry. The score plots of the method for the four taste substances and for the five brands of Jiafan rice wine show better discrimination ability than multi-frequency large amplitude pulse voltammetry. Sinusoidal envelope voltammetry is considered to be a promising technique for use in voltammetric electronic tongues.
Figure
The sketch of the electronic tongue with sinusoidal envelope voltammetry (SEV) and multi‐frequency large amplitude pulse voltammetry (MLAPV)  相似文献   

8.
Single metallic bowtie nanoantennas provide a controllable environment for surface-enhanced Raman scattering (SERS) of adsorbed molecules. Bowties have experimentally measured electromagnetic enhancements, enabling estimation of chemical enhancement for both the bulk and the few-molecule regime. Strong fluctuations of selected Raman lines imply that a small number of p-mercaptoaniline molecules on a single bowtie show chemical enhancement >10(7), much larger than previously believed, likely due to charge transfer between the Au surface and the molecule. This chemical sensitivity of SERS has significant implications for ultra-sensitive detection of single molecules.  相似文献   

9.
We have identified empirically a relationship between the surface morphology of small individual aggregates (<100 Au nanoparticles) and surface-enhanced Raman scattering (SERS) enhancement. We have found that multilayer aggregates generated greater SERS enhancement than aggregates limited to two-dimensional (2D) or one-dimensional structures, independent of the number of particles. SERS intensity was measured using the 730 cm(-1) vibrational mode of the adsorbed adenine molecule on 75 nm Au particles, at an excitation wavelength of 632.8 nm. To gain insight into these relationships and its mechanism, we developed a qualitative model that considers the collections of interacting Au nanoparticles of an individual aggregate as a continuous single entity that retains its salient features. We found the dimensions of the modeled surface features to be comparable with those found in rough metal surfaces, known to sustain surface plasmon resonance and generate strong SERS enhancement. Among the aggregates that we have characterized, a three 75 nm nanoparticle system was the smallest to generate strong SERS enhancement. However, we also identified single individual Au nanoparticles as SERS active at the same wavelength, but with a diameter twice in size. For example, we observed a symmetric SERS-active particle of 180 nm in diameter. Such individual nanoparticles generated SERS enhancement on the same order of magnitude as the small monolayer Au aggregates, an intensity value significantly stronger than predicted in recent theoretical studies. We also found that an aspect of our model that relates the dimensions of its features to SERS enhancement is also applicable to single individual Au particles. We conclude that the size of the nanoparticle itself, or the size of a protrusion of an irregularly shaped single Au particle, will contribute to SERS enhancement provided that its dimensions satisfy the conditions for plasmon resonance. In addition, by considering the ratio of the generated intensities of typical 2D Au aggregates to the enhancement of individual SERS-active particles, a value of approximately 2 is determined. Its moderate value suggests that it is not the aggregation effect that is responsible for much of the observed SERS enhancement but the surface region associated with the SERS-active site.  相似文献   

10.
The spectral evolution of the surface-enhanced Raman scattering (SERS) of 4-tert-butylbenzylmer-captan (4-tBBM) on gold nanoparticles assembly under laser irradiation is reported. The relative intensities of typical peaks in the spectrum of 4-tBBM gradually change with irradiation time. Comparison of the rate of spectral changes under several experimental conditions indicates that the surface plasmon resonance (SPR) induced heat in the gold nanoparticles assembly is the origin of the spectral evolution. During the process of self-assembly, 4-tBBM molecules do not form a compact ordered monolayer because of the spatial hindrance of the 4-tert-butyl end group. The heat induced by laser irradiation drives the 4-tBBM molecules to rearrange to a more stable orientation.  相似文献   

11.
We report a simple procedure to assemble gold nanoparticles into hollow tubular morphology with micrometer scale, wherein the citrate molecule is used not only as a reducing and capping agent, but also as an assembling template. The nanostructure and growth mechanism of microtubes are explored via SEM, TEM, FTIR spectra, and UV-vis spectra studies. The incorporation of larger gold nanoparticles by electroless plating results in an increase in the diameter of microtubes from 900 nm to about 1.2 microm. The application of the microtubes before and after electroless plating in surface-enhanced Raman scattering (SERS) is investigated by using 4-aminothiophenol (4-ATP) as probe molecules. The results indicate that the microtubes both before and after electroless plating can be used as SERS substrates. The microtubes after electroless plating exhibit excellent enhancement ability.  相似文献   

12.
The paper proposes a simple and portable approach for the surface enhanced Raman scattering (SERS) spectroscopy in situ determination of carboxylated single walled carbon nanotubes (SWNTs) in river water samples. The method is based on the subsequent microfiltration of a bare gold nanoparticles solution and the water sample containing soluble carbon nanotubes by using a home-made filtration device with a small filtration diameter. An acetate cellulose membrane with a pore size of 0.2 μm first traps gold nanoparticles to form the SERS-active substrate and then concentrates the carbon nanotubes. The measured SERS intensity data were closely fit with a Langmuir isotherm. A portable Raman spectrometer was employed to measure SERS spectra, which enables in situ determination of SWNTs in river waters. The limit of detection was 10 μg L−1. The precision, for a 10 mg L−1 concentration of carbon nanotubes, is 1.19% intra-membrane and 10.5% inter-membrane.  相似文献   

13.
A simple layer-by-layer method to coat the bacterial cells with gold and silver nanoparticles (AuNPs and AgNPs) for the acquisition of surface-enhanced Raman scattering (SERS) spectra is reported. First, the bacteria cell wall is coated with poly (allylamine hydrochloride) (PAH), a positively charged polymer, and then with citrate reduced Au or AgNPs. In order to increase the stability of the coating, another layer of PAH is prepared on the surface. The SEM and AFM images indicate that the nanoparticles are in the form of both isolated and aggregated nanoparticles on the bacterial wall. The coating of bacterial cells with AgNPs or AuNPs not only serves for their preparation for SERS measurement but also helps to visualize the coated of bacterial cells under the ordinary white-light microscope objective due to efficient light-scattering properties of Au and AgNPs. A comparative study single versus aggregates of bacterial cells is also demonstrated for possible single bacterial detection with SERS. The two bacteria that differ in shape and cell wall biochemical structure, Escherichia coli and Staphylococcus cohnii, Gram-negative and -positive, respectively, are used as models. The preliminary results reveal that the approach could be used for single bacterial cell identification.  相似文献   

14.
A one-step homogenous sensitive immunoassay using surface-enhanced Raman scattering (SERS) has been developed. This strategy is based on the aggregation of Raman reporter-labeled immunogold nanoparticles induced by the immunoreaction with corresponding antigens. The aggregation of gold nanoparticles results in a SERS signal increase of the Raman reporter. Therefore, human IgG could be directly determined by measuring the Raman signal of the reporter. The process of aggregation was investigated by transmission electron microscopy (TEM) and UV-Vis absorption spectroscopy. The effects of the temperature, time, and size of gold nanoparticles on the sensitivity of the assay were examined. Using human IgG as a model protein, a wide linear dynamic range (0.1-15 microg mL(-1)) was reached with low detection limit (0.1 microg mL(-1)) under optimized assay conditions. The successful test suggests that the application of the proposed method holds promising potential for simple, fast detection of proteins in the fields of molecular biology and clinical diagnostics.  相似文献   

15.
In surface-enhanced Raman spectra, vibrational peaks are superimposed on a background continuum, which is known as one major experimental anomaly. This is problematic in assessing vibrational information especially in the low Raman-shift region below 200 cm−1, where the background signals dominate. Herein, we present a rigorous comparison of normal Raman and surface-enhanced Raman spectra for atomically defined surfaces of Au(111) or Au(100) with and without molecular adsorbates. It is clearly shown that the origin of the background continuum is well explained by a local field enhancement of electronic Raman scattering in the conduction band of Au. In the low Raman-shift region, electronic Raman scattering gains additional intensity, probably due to a relaxation in the conservation of momentum rule through momentum transfer from surface roughness. Based on the mechanism for generation of the spectral background, we also present a practical method to extract electronic and vibrational information at the metal/dielectric interface from the measured raw spectra by reducing the thermal factor, the scattering efficiency factor and the Purcell factor over wide ranges in both the Stokes and the anti-Stokes branches. This method enables us not only to analyse concealed vibrational features in the low Raman-shift region but also to estimate more reliable local temperatures from surface-enhanced Raman spectra.

Both electronic and vibrational information at the metal/dielectric interface were explicitly extracted from surface-enhanced Raman spectra.  相似文献   

16.
The addition of Bismuthiol II to the gold nanoparticles (AuNPs) solution led to the aggregation of AuNPs with a color change from red to blue. As a result, hot spots were formed and strong surface-enhanced Raman scattering (SERS) signal of Bismuthiol II was observed. However, the Bismuthiol II-induced aggregation of AuNPs could be reversed by Hg2+ in the system, accompanied by a remarkable color change from blue to red. As evidenced by UV–vis and SERS spectroscopy, the variation in absorption band and SERS intensity was strongly dependent on the concentration of Hg2+, suggesting a colorimetric and SERS dual-signal sensor for Hg2+. The sensor had a high sensitivity, low detection limits of 2 nM and 30 nM could be achieved by UV–vis spectroscopy and by SERS spectroscopy, respectively. Other environmentally relevant metal ions did not interfere with the detection of Hg2+. The method was successfully applied to detect Hg2+ in water samples. It was simple, rapid and cost-effective without any modifying or labeling procedure.  相似文献   

17.
Biologically derived materials provide a rich variety of approaches toward new functional materials because of their fascinating structures and environment-friendly features, which is currently a topic of research interest. In this paper, we show that the cuttlebone-derived organic matrix (CDOM) is an excellent scaffold for the one-step synthesis and assembly of silver nanoparticles (AgNPs), which can be further used as substrate for surface-enhanced Raman scattering (SERS). Formation of AgNPs–CDOM composite was accomplished by the reaction of CDOM with AgNO3 and NH3·H2O solution at 80 °C without using any other stabilizer and reducing agents. UV–vis spectra and TEM were utilized to characterize the AgNPs and investigate their formation process. Results demonstrate that the size and distribution of AgNPs can be partly regulated by changing incubation time; the concentration of NH3·H2O is critical to the formation rate of AgNPs. As a proof of principle, we show that the AgNPs–CDOM composite can be employed in trace analysis using SERS.  相似文献   

18.
A wet chemical route for the preparation of MnO(2) nanosheet/Au nanoparticle/MWNT hybrid materials is developed. The Au nanoparticles are prepared by reducing AuCl(4)(-) with citrate and attached to thiol-modified MWNTs. Owing to the reducing property and the binding ability to Mn-containing species of capping agents surrounded the Au nanoparticles, the MnO(2) nanosheets are formed on the surface of Au nanoparticles. The ternary nanocomposites of MnO(2)/Au/MWNT have been characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and FT-IR spectroscopy. The affiliation of MnO(2) nanosheets into the hybrids remarkably enhances the electrocatalytic performance of Au nanoparticle/MWNT towards the oxygen reduction reaction. The specific capacitance of the ternary hybrids is also increased dramatically comparing with that of Au/MWNT.  相似文献   

19.
A quinoline derivative N-(2-hydroxyl-naphthylmethyl)-N-(quinol-8-yl)amine(2) was synthesized and characterized, which can selectively recognize Cu2+ over other metal ions such as Zn2+, Cd2+, Sn2+, Pb2+, Hg2+, Ni2+, Mg2+, Cr3+, Mn2+, Sr2+, K+, Ca2+, Na+, Ba2+ in acetonitrile/water(volume ratio 99:1). Cu2+ induced a new absorption peak at 464 nm in the absorption spectrum(ε=4.66×102 L·mol-1·cm-1) and quenched the fluorescence emission of quinoline derivative 2. The binding of quinoline derivative 2 to Cu2+ wa...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号