首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The detection of biomarkers is of great significance in the diagnosis of numerous diseases,especially cancer.Herein,we developed a sensitive and universal fluorescent aptasensor strategy based on magnetic beads,DNA G-quadruplex,and exonuclease III(Exo III).In the presence of a target protein,a label-free single strand DNA(ssDNA) hybridized with the aptamer was released as a trigger DNA due to specific recognition between the aptamer and target.Subsequently,ssDNA initiates the Exo Ⅲ-aided recycling to amplify the fluorescence signal,which was caused by N-methylmesoporphyrin IX(NMM)insertion into the G-quadruplex structure.This proposed strategy combines the excellent specificity between the aptamer and target,high sensitivity of the fluorescence signal by G-quadruplex and Exo Ⅲ-aided recycling amplification.We selected(50-1200 nmol/L) MUC1,a common tumor biomarker,as the proof-of-concept target to test the specificity of our aptasenso r.Results reveal that the sensor sensitively and selectively detected the target protein with limits of detection(LODs) of 3.68 and 12.83 nmol/L in buffer solution and 10% serum system,respectively.The strategy can be easily applied to other targets by simply substituting corresponding aptamers and has great potential in the diagnosis and monitoring of several diseases.  相似文献   

2.
In this work,a fluorescent probe(TPEBe-I)was developed for adenosine triphosphate(ATP)detection based on the synergetic effect of aggregation-induced emission and counterion displacement.TPEBe-I gave weak emission in aqueous solution due to the heavy-atom effect of counter iodide ion.However,upon the addition of ATP,the new aggregate complex(TPEBe-ATP)was formed between the cationic unit of TPEBe-I and ATP through electrostatic interactions,which not only restricted the intramolecular motion of luminogen but also eliminated the quenching effect of iodide ion.As a result,the fluorescent light-up detection for ATP was successfully achieved.Moreover,TPEBe-I exhibited high selectivity towards ATP and showed a wide linear detection region towards the logarithm of ATP concentration(5—600μmol/L)with a detection limit of 1.0μmol/L,enabling TPEBe-I as a promising probe for ATP quantitative analysis.  相似文献   

3.
The detection of biomarkers is of great significance in the diagnosis of numerous diseases,especially cancer.Herein,we developed a sensitive and universal fluorescent aptasensor strategy based on magnetic beads,DNA G-quadruplex,and exonuclease Ⅲ(Exo Ⅲ).In the presence of a target protein,a label-free single strand DNA(ssDNA)hybridized with the aptamer was released as a trigger DNA due to specific recognition between the aptamer and target.Subsequently,ssDNA initiates the ExoⅢ-aided recycling to amplify the fluorescence signal,which was caused by N-methylmesoporphyrin IX(NMM)insertion into the G-quadruplex structure.This proposed strategy combines the excellent specificity between the aptamer and target,high sensitivity of the fluorescence signal by G-quadruplex and ExoⅢ-aided recycling amplification.We selected(50-1200 nmol/L)MUC1,a common tumor biomarker,as the proof-of-concept target to test the specificity of our aptasenso r.Results reveal that the sensor sensitively and selectively detected the target protein with limits of detection(LODs)of 3.68 and 12.83 nmol/L in buffer solution and 10%serum system,respectively.The strategy can be easily applied to other targets by simply substituting corresponding aptamers and has great potential in the diagnosis and monitoring of several diseases.  相似文献   

4.
A double magnetic separation-assisted fluorescence method was developed to rapidly detect ochratoxin A(OTA). The OTA aptamer functionalized magnetic nanomaterial(Fe3O4-Aptanier) and complementary DNA conjugated nitrogen-doped graphene quantum dots(NGQDs-cDNA) were used in this assay. Aptamer could hybridize with cDNA, which induced tlie NGQDs-cDNA to bind onto Fe3O4-Aptamer, and resulted in the fluorescence quenching of NGQDs. After the addition of OTA, the NGQDs-cDNA could release into the solution, and resulted in the recovery of fluorescence signal of NGQDs consequently. By utilizing the magnetic separation, the unbonded NGQDs-cDNA and residual Fe3O4-Aptamer were removed, which significantly increased the fluorescence signal intensity. OTA could be detected in the linear range of 10 nmol/L to 2000 nmol/L, with a limit of detection as 0.66 mnol/L. The advantages of this method include simple operation, good selectivity and high sensitivity, and this method can be used for the rapid detection of ochratoxin A in wheat and com.  相似文献   

5.
<正>A novel and simple fluorescent molecular sensor,1-pyrenecarboxaldehyde thiosemicarbazone(Hpytsc),was synthesized.Its higher sensitivity and selectivity to mercury(Ⅱ) ion were studied through absorption and emission channels.The UV-vis spectra show that the increasing mercury(Ⅱ) ion concentrations result in the decreasing absorption intensity.The fluorescence monomer emission of Hpytsc is enhanced upon binding mercury(Ⅱ) ion,which should be due to the 1:1 complex formation between Hpytsc and metal ion.  相似文献   

6.
Ovalbumin-stabilized gold nanoclusters(OVA@AuNCs) were prepared with ascorbic acid as a reducing agent. This strategy could realize the synthesis of water-soluble OVA@AuNCs within 20 min. The asprepared fluorescent probe showed a red fluorescence emission at 630 nm. Moreover, the properties of the OVA@AuNCs were characterized by transmission electron microscope, dynamic light scattering,ultraviolet-visible spectroscopy, fluorescent spectroscopy. Based on the surface electron density decrease-induced fluorescence quenching mechanism, the OVA@AuNCs provided high sensitivity and selectivity for sensing copper ions. A good linear relationship was obtained between the fluorescence intensity of OVA@AuNCs and the concentration of copper ions in the range of 5.0-100.0 μmol/L(R~2=0.999) with a detection limit of 640 nmol/L Furthermore, the rat serum copper contents were determined by using the OVA@AuNCs based assay, indicating great potential of fluorescent probes for application in biological and clinical analysis.  相似文献   

7.
Combining the inhibited aptazyme and molecular beacon(MB),we developed a versatile sensing strategy for amplified detection of adenosine.In this strategy,the adenosine aptamer links to the 8-17 DNAzyme to form an aptazyme.A short sequence,denoted as inhibitor,is designed to form a duplex spanning the aptamer–DNAzyme junction,which blocks the catalytic function of the DNAzyme.Only in the presence of target adenosine,the aptamer binds to adenosine,thus the inhibitor dissociates from the aptamer portion of the aptazyme and can no longer form the stable duplex required to inhibit the catalytic activity of the aptazyme.The released DNAzyme domain will hybridize to the MB and catalyze the cleavage in the presence of Zn2+,making the fluorophore separate from the quencher and resulting in fluorescence signal.The results showed that the detection method has a dynamic range from 10 nmol/L to 1 nmol/L,with a detection limit of 10 nmol/L.  相似文献   

8.
A new facile fluorescence probing strategy, which was based on N-doped carbon dots(NCDs) and methyl parathion hydrolase(MPH), was developed for the determination of parathion-methyl(PM). The fluorescence intensity of NCDs-MPH system was proportional to PM concentration in the range of 2.38–73.78 mmol/L, with a detection limit of 0.338 mmol/L. Moreover, the present simple and facile method could be used to determine methyl parathion in environmental and agricultural samples successfully.Furthermore, the detection mechanism of this system is inner filter effect and molecular interactions between NCDs and p-nitrophenol, which is the hydrolysis product of PM catalyzed by methyl parathion hydrolase.  相似文献   

9.
Specific oligonucleotides such as telomere DNA and aptamer often undergo conformational changes upon ligand binding. Composite reagent composed of o-phthalaldehyde and β-mercaptoethanol(OPAME) has been extensively applied to fluorescent detection of amino compounds based on the reaction of primary amino-group, herein we proposed a general spectrofluorometry for ions and small molecules due to conformational changes upon ligand binding taking K+ and ATP as examples. In a borate controlled buffer medium, telomere DNA could react with OPAME, giving a thio-subtituted isoindole compound with strong fluorescence emission at 455 nm when excited at 340 nm. It was found that however, the fluorescence emission was greatly reduced in the presence of K+ since the formation of the quadruplex structure inhibits the reaction activity of amino-groups of telomere DNA. In order to testify the general application of OPAME reagent based on the conformational change of oligonucleotides, we further proposed a sensitive method of ATP based on its highly selective interaction with ATP-aptamer. The above mentioned applications show that the spectrofluorometry with the aid of OPAME reagent is simple, label free that is expected to be potentially general for DNA conformational change-based target detection.  相似文献   

10.
Detection of Cu(Ⅱ) is very important in disease diagnose, biological system detection and environmental monitoring. Previously, we found that the product TPE-CS prepared by attaching the chromophores of tetraphenylethylene(TPE) to the chitosan(CS) chains showed excellent fluorescent properties. In this study, we tried to use TPE-CS for detecting Cu(Ⅱ) because of the stable complexation of CS with heavy metals and the luminosity mechanism of the Restriction of Intramolecular Rotations(RIR) for aggregation-induced emission(AIE)-active materials. The fluorescence intensity changed when TPE-CS was contacted with different metal ions, to be specific, no change for Na~+, slightly increase for Hg~(2+), Pb~(2+), Zn~(2+), Cd~(2+), Fe~(2+), Fe~(3+) due to the RIR caused by the complexation between CS and metal ions. However, for Cu~(2+), an obvious fluorescence decrease was observed because of the Photoinduced-Electron-Transfer(PET). Moreover, we found that the quenched FL intensity of TPE-CS was proportional to the concentration of Cu(Ⅱ) in the range of 5 μmol/L to 100 μmol/L, which provided a new way to quantitatively detect Cu(Ⅱ) . Besides, TPE-CS has excellent water-solubility as well as absorbability(the percentage of removal, R = 84%), which is an excellent detection probe and remover for Cu(Ⅱ) .  相似文献   

11.
In this study, a resorufin derivative RTP-1, which is a novel fluorescent ‘‘turn-on' probe for sensitive detection of hydrazine within 30 min, is designed and synthesized. The selective deprotection of the ester group of the probe by hydrazine led to a prominent enhancement of fluorescent intensity, as well as a remarkable color change from colorless to pink, which could be distinguished by naked eye. The fluorescence enhancement showed decent linear relationship with hydrazine concentration ranging from 0 to 50 mmol/L, with a detection limit of 0.84 mmol/L. The specificity of RTP-1 for hydrazine to a number of metal ions, anions and amines is satisfactory. The sensing mechanism of RTP-1 and hydrazine was evaluated by HPLC, ESI mass spectrometry and density functional theory(DFT).Moreover, we have utilized this fluorescent probe for imaging hydrazine in living cells, and the fluorescence was clearly observed when the cells were incubated with hydrazine(100 mmol/L) for 30 min.  相似文献   

12.
This report described a free-enzyme, convenient and inexpensive genotyping biosensor capable of detecting single nucleotide polymorphism at normal temperature based on the combination of toeholdmediated strand displacement reaction(toehold-SDR) and microbead-capture technique. The biosensor consists of a pre-hybridized strand formed by a reporter probe and a capture probe. In the presence of a mutant sequence, there is no toehold-mediated strand displacement and the reporter probe cannot be released from the pre-hybridized strand. Microbeads capture the fluorescent pre-hybridized strand through biotin–streptavidin interaction, so microbeads give out significant fluorescence signal, while there is no fluorescence in the solution. However, in the presence of a matched target, the strand displacement is effectively initiated and the reporter probe is released from pre-hybridized strand. After adding microbeads, the solution produces bright fluorescence, while microbeads have no obvious signal.Genotypes are identified conveniently according to the fluorescence intensity of the solution. The method provides a simple and inexpensive strategy to detect point mutation. Moreover, this biosensor shows the linear relationship in the range of 1–40 nmol/L and reaches a detection limit of 0.3 nmol/L.  相似文献   

13.
Using D-proline (D-Pro) as the reducing agent and capper, D-Pro@AuNCs was rapidly constructed. Its fluorescence could be quenched by AuNPs. Due to the electrostatic interaction between anticancer drug Raltitrexed (RTX) and AuNPs induced fluorescence "turn-on" principle, the resultant fluorescent probe exhibited good selectivity and sensitivity for detecting RTX in rat serums.  相似文献   

14.
A novel dual-modal fluorometric and colorimetric method was developed for glucose detection using MnO2 sheets and carbon quantum dots(CQDs). The glucose could be oxidized by glucose oxidase, in accompanied witli the fbnnation of H2O2 intennediate, which resulted in the decomposition of MnO2 sheets, as well as tlie MnO2 sheets(brown) changed to Mn^2+ ions(colorless), which induced the absorption of MnO2 sheet decreased and the fluorescence of CQDs increased, consequently. The linear detection ranges of glucose are 5-1000 μmol/L by fluorescent method and 5-60 μmol/L by colorimetric method. The limits of detection of these two measurements are 2.11 and 2.18 μmol/L, respectively. This method is easy to conduct, has reasonable sensitive and selectivity, and could be applied for the glucose detection in real human senim.  相似文献   

15.
We report herein a new fluorescent probe for the selective recognition and determination of dodine among 20 different pesticides.This fluorescent probe was assembled through host-guest complexation between cucurbit[10]uril(Q[10]) and aminopropyl-1-pyrenebutanamide(PBA) and is designated as PBA@Q[10].Addition of dodine to PBA@Q[10] results in a dramatic enhancement of fluorescence intensity at 390 nm,accompanied by fluorescence quenching at 488 nm.On this basis,the detection limit is 6.78 × 10-7 mol/L.The response mechanism is a competitive interaction:dodine occupies the cavity of Q[10] and forces PBA to leave.  相似文献   

16.
The interactions between small molecules and proteins constitute a critical regulatory mechanism in many fundamental biological processes.A novel biosensing strategy has been developed for sensitive and selective detection of small molecule and protein interaction on the basis of terminal protection of small molecule-linked ssDNA-SWNT nanoassembly.The developed strategy is demonstrated using folate and its binding protein folate receptor(FR) as a model case.The results reveal the developed technique displays superb resistance to non-specific binding,very low detection limit as low as subnanomolar,and a wide dynamic range from 100 pmol/L to 500 nmol/L of FR.Thus,it may offer a simple,cost-effective,highly selective and sensitive platform for homogeneous fluorescence detection of small molecule-protein interaction and related biochemical studies.  相似文献   

17.
High sensitive, accurate detection for tumor-associated overexpressed enzyme activity is highly significant for further understanding enzyme function, discovering potential drugs, and early diagnosis and prevention of diseases. In this work, we developed a facile, direct and single-step detection platform for primary ovarian cancers related glycosidase activity based on the inner filter effect(IFE) between glycosidase catalytic product and black phosphorus quantum dots(BPQDs). Highly fluorescent BPQDs were successfully synthesized from bulk black phosphorus by a simple liquid exfoliation method. Under the catalysis of β-galactosidase, p-nitrophenyl-β-D-galactopyranoside(PNPG) was transformed into pnitrophenol(PNP) and β-D-galactopyranoside. Meanwhile, the absorption of catalytic product PNP greatly overlapped with the excitation and emission spectra of fluorescent BPQDs, leading to the fluorescence quenching of BPQDs with a high quenching efficiency. The proposed sensing strategy provided a low detection limit of 0.76 U/L, which was 1 — 2 orders of magnitude lower than most unmodified sensing platforms. D-Galactal was selected as the inhibitor for β-galactosidase to further assess the feasibility of screening potential inhibitors. The fluorescence recovery of BPQDs suggests that the unmodified sensing platform is feasible to discover potential drugs of β-galactosidase. Our work paves a general way in the detection of glycosidase activity with fluorescent BPQDs, which can be promising for glycosidase-related disease diagnosis and pathophysiology elucidation.  相似文献   

18.
Ru(bpy)32 electrochemiluminescence (ECL) was applied to determine quercetin. It was found that ECL intensity of Ru(bpy)32 could be enhanced in the presence of quercetin in basic solution, and the enhanced light emission intensity was proportional to the concentration of quercetin over the range of 1×10-6 mol/L to 2×10-4 mol/L.  相似文献   

19.
Cu(Ⅱ) detection is important because it plays crucial role in several biological processes and ecological systems.Fluorescent techniques have attracted more and more attention in Cu(Ⅱ) detection.In this report,we contribute a novel strategy to use fluorescence spectroscopy for Cu(Ⅱ) specific detection.The specificity relies on the fact that,of the many metal cations,only Cu(Ⅱ) can catalyze the hydrolyzation of a-amino acid ester.The novelty originates from the unique aggregation-induced emission(AIE) property of the fluorescent label.We designed a model a-amino acid ester(TPE-Ala) constructed with alanine and tetraphenylethene-functionalized methanol(TPE-methanol).In comparison with the precursor TPE-Ala, TPE-methanol has lower solubility and is easy to form aggregates in water,thereby displaying a higher fluorescent response.Thus,the Cu(Ⅱ) catalyzed hydrolyzation can be monitored by recording the fluorescence enhancement and fluorescent detection Cu(Ⅱ) is rationally achieved.  相似文献   

20.
In this contribution, we reported a very simple and small molecule material, 2,5-dimethoxyterephthalaldehyde(DMA). It exhibited a relatively weak fluorescence in solution, while showed a steadily increased green fluorescence with typical aggregation-induced enhanced emission(AIE) effect for forming a cubic-like microcrystal structure in THF-H2 O mixed solvent.The microcrystals presented significantly higher fluorescence than that of amorphous aggregates. The DMA microcrystals suspension showed a good response to 2,4,6-trinitrophenol(TNP) with a LOD of 1.2×10~(-7) M, which is the best result of TNP detection in aqueous solution. Quantum chemical calculation revealed that DMA is a donor(D)-receptor(A) type molecule with methoxy unit as donor and carbonyl moiety as receptor. Its emission arises from an intramolecular charge transfer(ICT) from methoxy units to carbonyl units. NMR indicated that there is a strong hydrogen bond interaction between DMA and TNP.Hydrogen bond interaction can effectively decrease the intermolecular distance of DMA and TNP, which will increase the efficiency of photoinduced electron transfer(PET) and fluorescence resonance energy transfer(FRET), and hence will be advantageous for its selectivity. The microcrystal induced enhanced emission could be generally used for kinds of target molecules analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号