首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Dynamic material functions of polymeric systems are calculated via a defect-diffusion model. The random motion of defects is modelled by a fractaltime stochastic process. It is shown that the dynamic functions of polymeric solutions can be approximated by the defect-diffusion process of the mixed type. The relaxation modulus of Kohlrausch type is obtained for a fractal-time defect-diffusion process, and it is shown that this modulus is capable of portraying the dynamic behavior of typical viscoelastic solutions.The Fourier transforms of the Kohlrausch function are calculated to obtain and. A three-parameter model for and is compared with the previous calculations. Experimental measurements for five polymer solutions are compared with model predictions. D rate of deformation tensor - G(t) mechanical relaxation modulus - H relaxation spectrum - I(t) flux of defects - P n (s) probability of finding a walker ats aftern-steps - P generating function ofP n (s) - s(t) fraction of surviving defects - , () gamma function (incomplete) - 0 zero shear viscosity - * () complex viscosity - frequency - t n n-th moment - F[] Fourier transform - f * (u) Laplace transform off(t) - , components of * - G f, f * fractional model - G 3, 3 * three parameter model - complex conjugate ofz - material time derivative ofD  相似文献   

2.
For many solid materials the stress relaxation process obeys the universal relationF = – (d/d lnt)max = (0.1 ± 0.01) ( 0 i ), regardless of the structure of the material. Here denotes the stress,t the time, 0 the initial stress of the experiment and i the internal stress. A cooperative model accounting for the similarity in relaxation behaviour between different materials was developed earlier. Since this model has a spectral character, the concepts of linear viscoelasticity are used here to evaluate the corresponding prediction of the dynamic mechanical properties, i.e. the frequency dependence of the storageE () and lossE () moduli. Useful numerical approximations ofE () andE () are also evaluated. It is noted that the universal relation in stress relaxation had a counterpart in the frequency dependence ofE (). The theoretical prediction of the loss factor for high-density polyethylene is compared with experimental results. The agreement is good.  相似文献   

3.
Response of an elastic Bingham fluid to oscillatory shear   总被引:1,自引:0,他引:1  
The response of an elastic Bingham fluid to oscillatory strain has been modeled and compared with experiments on an oil-in-water emulsion. The newly developed model includes elastic solid deformation below the yield stress (or strain), and Newtonian flow above the yield stress. In sinusoidal oscillatory deformations at low strain amplitudes the stress response is sinusoidal and in phase with the strain. At large strain amplitudes, above the yield stress, the stress response is non-linear and is out of phase with strain because of the storage and release of elastic recoverable strain. In oscillatory deformation between parallel disks the non-uniform strain in the radial direction causes the location of the yield surface to move in-and-out during each oscillation. The radial location of the yield surface is calculated and the resulting torque on the stationary disk is determined. Torque waveforms are calculated for various strains and frequencies and compared to experiments on a model oil-in-water emulsion. Model parameters are evaluated independently: the elastic modulus of the emulsion is determined from data at low strains, the yield strain is determined from the phase shift between torque and strain, and the Bingham viscosity is determined from the frequency dependence of the torque at high strains. Using these parameters the torque waveforms are predicted quantitatively for all strains and frequencies. In accord with the model predictions the phase shift is found to depend on strain but to be independent of frequency.Notation A plate strain amplitude (parallel plates) - A R plate strain amplitude at disk edge (parallel disks) - G elastic modulus - m torque (parallel disks) - M normalized torque (parallel disks) = 2m/R 30 - N ratio of viscous to elastic stresses (parallel plates) =µ A/ 0 ratio of viscous to elastic stresses (parallel disks) =µ A R/0 - r normalized radial position (parallel disks) =r/R - r radial position (parallel disks) - R disk radius (parallel disks) - t normalized time = t — /2 - t time - E elastic strain - P plate strain (displacement of top plate or disk divided by distance between plates or disks) - PR plate strain at disk edge (parallel disks) - 0 yield strain - E normalized elastic strain = E/0 - P normalized plate strain = P/0 - PR normalized plate strain at disk edge (parallel disks) = PR/0 - 0 normalized plate strain amplitude (parallel plates) =A/ 0 — normalized plate strain amplitude at disk edge (parallel disks) =A R/0 - phase shift between P andT (parallel plates) — phase shift between PR andM (parallel disks) - µ Bingham viscosity - stress - 0 yield stress - T normalized stress =/ 0 - frequency  相似文献   

4.
The flow of a viscoelastic liquid driven by the steadily rotating bottom cover of a cylindrical cup is investigated. The flow field and the shape of the free surface are determined at the lowest significant orders of the regular domain perturbation in terms of the angular velocity of the bottom cap. The meridional field superposed on a primary azimuthal field shows a structure of multiple cells. The velocity field and the shape of the free surface are strongly effected by the cylinder aspect ratio and the elasticity of the liquid. The use of this flow configuration as a free surface rheometer to determine the first two Rivlin-Ericksen constants is shown to be promising.Nomenclature R, ,Z Coordinates in the physical domain D - , , Coordinates in the rest stateD 0 - r, ,z Dimensionless coordinates in the rest stateD 0 - Angular velocity - Zero shear viscosity - Surface tension coefficient - Density - Dimensionless surface tension parameter - 1, 2 The first two Rivlin-Ericksen constants - Stream function - Dimensionless second order meridional stream function - * Dimensionless second normal stress function - 2 Dimensionless sum of the first and second normal stress functions - N 1,N 2 The first and second normal stress functions - n Unit normal vector - D Stretching tensor - A n nth order Rivlin-Ericksen tensor - S Extra-stress - u Velocity field - U Dimensionless second order meridional velocity field - V Dimensionless first order azimuthal velocity field - p Pressure - Modified pressure field - P Dimensionless second order pressure field - J Mean curvature - a Cylinder radius - d Liquid depth at rest - D Dimensionless liquid depth at rest - h Free surface height - H Dimensionless free surface height at the second order  相似文献   

5.
A theory proposed by the author as representative of the flow of a general suspension contains three interaction forces, f, S and N. For a quasi-concentrated suspension and for a dilute suspension, N and S, N are omitted, respectively. For the latter special case, we treat diffusion of a fluid through an elastic solid. For a quasi-concentrated suspension, we show that F and S depend on the gradient of the motion gradient. We demonstrate the existence of interesting phenomena: non-simple behavior, dissipative effects, generalized lift and drag forces.Presented at the second conference Recent Developments in Structured Continua, May 23 – 25, 1990, in Sherbrooke, Québec, Canada.  相似文献   

6.
In solutions of ABA-triblock copolymers in a poor solvent for A thermoreversible gelation can occur. A three-dimensional dynamic network may form and, given the polymer and the solvent, its structure will depend on temperature and polymer mass fraction. The zero-shear rate viscosity of solutions of the triblock-copolymer polystyrene-polyisoprene-polystyrene in n-tetradecane was measured as a function of temperature and polymer mass fraction, and analyzed; the polystyrene blocks contained about 100 monomers, the polyisoprene blocks about 2000 monomers. Empirically, in the viscosity at constant mass fraction plotted versus inverse temperature, two contributions could be discerned; one contribution dominating at high and the other one dominating at low temperatures. In a comparison with theory, the contribution dominating at low temperatures was identified with the Lodge transient network viscosity; some questions remain to be answered, however. An earlier proposal for defining the gelation temperature T gel is specified for the systems considered, and leads to a gelation curve; T gel as a function of polymer mass fraction.Mathematical symbols {} functional dependence; e.g., f{x} means f is a function of x - p log logarithm to the base number p; e.g., 10log is the common logarithm - exp exponential function with base number e - sin trigonometric sine function - lim limit operation - – in integral sign: Cauchy Principal Value of integral, e.g., - derivative to x - partial derivative to x Latin symbols dimensionless constant - b constant with dimension of absolute temperature - constant with dimension of absolute temperature - B dimensionless constant - c mass fraction - dimensionless constant - constant with dimension of absolute temperature - d * dimensionless constant - D{0} constant with dimension of absolute temperature - e base number of natural (or Naperian) logarithm - g distribution function of inverse relaxation times - G relaxation strength relaxation function - h distribution function of relaxation times reaction constant enthalpy of a molecule - H Heaviside unit step function - i complex number defined by i 2 = –1 - j{0} constant with dimension of viscosity - j index number - k Boltzmann's constant - k H Huggins' coefficient - m mass of a molecule - n number - N number - p index number - s entropy of a molecule - t time - T absolute temperature Greek symbols as index: type of polymer molecule - as index: type of polymer molecule - shear as index: type of polymer molecule - shear rate - small variation; e.g. T is a small variation in T relative deviation Dirac delta distribution as index: type of polymer molecule - difference; e.g. is a difference in chemical potential - constant with dimension of absolute temperature - (complex) viscosity - constant with dimension of viscosity - [] intrinsic viscosity number - inverse of relaxation time - chemical potential - number pi; circle circumference divided by its diameter - mass per unit volume - relaxation time shear stress - angular frequency  相似文献   

7.
A. Papo 《Rheologica Acta》1988,27(3):320-325
Shear stress and shear rate data obtained for gypsum plaster pastes were correlated by means of different rheological models. The pastes were prepared from a commercial calcium sulfate hemihydrate at various water/plaster ratios ranging from 100/150 to 100/190. The tests were performed at 25°C using a rotating coaxial cylinder viscosimeter. The measurements were accomplished by applying a step-wise decreasing shear rate sequence. Discrimination among the models was made: (1) on the basis of the fitting goodness; (2) by checking the physical meaning of the calculated parameters; (3) on the basis of the stability of the parameters and of their prediction capacity beyond the limits of the experimental data. In the light of above, the Casson model seemed to be most effective for application to gypsum plaster pastes. K Consistency - n Power-law index - N Number of experimental data - P Number of parameters - Shear rate (s–1) - 0 Viscosity (Pa · s) - d Dispersing medium viscosity (Pa · s) - p Plastic viscosity (Pa · s) - Viscosity at zero shear rate (Pa · s) - Viscosity at infinite shear rate (Pa · s) - [] Intrinsic viscosity - 2 Variance - Shear stress (Pa) - 0 Yield stress (Pa) - Solid volume fraction - m Maximum solid volume fraction  相似文献   

8.
Neck propagation in the stretching of elastic solid filaments having a yield point was analyzed using the space one-dimensional thin filament governing equations developed previously by the authors and other researchers. Constitutive model for the filament was assumed to be expressible as engineering tensile stress(X) (tensile force) given as a function of elongational strain with the(X) curve having a yield point maxima followed by a minima and a breaking point greater than the yield point maxima. Also incorporated into the model is the hysteresis of irreversible plastic deformation. When inertia is taken into consideration, the thin filament equations were found to reduce to the nonlinear wave equation 2 (X)/ 2 =C 1 2 X/ 2 where is Lagrangean space coordinate, is time, andC 1 is inertia coefficient. The above nonlinear wave equation yields a solutionX(, ) having a stepwise discontinuity inX which propagates along the axis. The zero speed limit of the step wave solution was found to describe the above neck propagation occurring in solid filaments. Furthermore, it was recognized that the nonlinear wave equation was known for many years to also govern the plastic shock wave which propagates axially within a metal rod subjected to a very strong impact on its end. The one-dimensional atmospheric shock wave also was known to be governed by the nonlinear wave equation upon making certain simplifying assumptions. The above and other evidences lead to the conclusion that neck propagation occurring in the extension of solid filament obeying the above(X) function can be formally described as a shock wave.  相似文献   

9.
The peristaltic motion of a non-Newtonian fluid represented by the constitutive equation for a second-order fluid was studied for the case of a planar channel with harmonically undulating extensible walls. A perturbation series for the parameter ( half-width of channel/wave length) obtained explicit terms of 0(2), 0(2Re2) and 0(1Re2) respectively representing curvature, inertia and the non-Newtonian character of the fluid. Numerical computations were performed and compared to the perturbation analysis in order to determine the range of validity of the terms.Presented at the second conference Recent Developments in Structured Continua, May 23–25, 1990, in Sherbrooke, Québec, Canada  相似文献   

10.
Behavior of polymer melts in biaxial as well as uniaxial elongational flow is studied based on the predictions of three constitutive models (Leonov, Giesekus, and Larson) with single relaxation mode. Transient elongational viscosities in both flows are calculated for three constitutive models, and steady-state elongational viscosities are obtained as functions of strain rates for the Giesekus and the Larson models.Change of elongational flow behavior with adjustable parameter is investigated in each model. Steady-state viscosities E and B are obtained for the Leonov model only when the strain-hardening parameter is smaller than the critical value cr determined in each flow. In this model, uniaxial elongational viscosity E increases with increasing strain rate , while biaxial elongational viscosity B decreases with increasing biaxial strain rate B . The Giesekus model predictions depend on the anisotropy parameter . E and B increase with strain rates for small B while they decrease for large . When is 0.5, E in increasing, but B is decreasing. The Larson model predicts strain-softening behavior for both flows when the chain-contraction parameter > 0.5. On the other hand, when is small, the steady-state viscosities of this model show distinct maximum around = B = 1.0 with relaxation time . The maximum is more prominent in E than in B .  相似文献   

11.
In dynamic rheological experiments melt behavior is usually expressed in terms of complex viscosity * () or complex modulusG * (). In contrast, we attempted to use the complex fluidity * () = 1/µ * () to represent this behavior. The main interest is to simplify the complex-plane diagram and to simplify the determination of fundamental parameters such as the Newtonian viscosity or the parameter of relaxation-time distribution when a Cole-Cole type distribution can be applied. * () complex shear viscosity - () real part of the complex viscosity - () imaginary part of the complex viscosity - G * () complex shear modulus - G() storage modulus in shear - G() loss modulus in shear - J * () complex shear compliance - J() storage compliance in shear - J() loss compliance in shear - shear strain - rate of strain - angular frequency (rad/s) - shear stress - loss angle - * () complex shear fluidity - () real part of the complex fluidity - () imaginary part of the complex fluidity - 0 zero-viscosity - 0 average relaxation time - h parameter of relaxation-time distribution  相似文献   

12.
A powerful but still easy to use technique is proposed for the processing and analysis of dynamic mechanical data. The experimentally determined dynamic moduli,G() andG(), are converted into a discrete relaxation modulusG(t) and a discrete creep complianceJ(t). The discrete spectra are valid in a time window which corresponds to the frequency window of the input data. A nonlinear regression simultaneously adjust the parametersg i , i ,i = 1,2, N, of the discrete spectrum to obtain a best fit ofG, G, and it was found to be essential that bothg i and i are freely adjustable. The number of relaxation times,N, adjusts during the iterative calculations depending on the needs for avoiding ill-posedness and for improved fit. The solution is insensitive to the choice of initial valuesg i,0, i,0,N 0. The numerical program was calibrated with the gel equation which gives analytical expressions both in the time and the frequency domain. The sensitivity of the solution was tested with model data which, by definition, are free of experimental error. From the relaxation time spectrum, a corresponding discrete set of parametersJ 0,, J d,i and i of the creep complianceJ(t) can then readily be calculated using the Laplace transform.This paper is dedicated to Professor Hanswalter Giesekus on the occasion of his retirement as Editor of Rheologica Acta.  相似文献   

13.
The effect of temperature on the steady-shear viscosity of two base emulsions (water-in-creosote (w/o) and creosote-in-water (o/w)) and a pigment emulsified creosote (PEC) was investigated. The PEC is a water-in-creosote emulsion which contains also a solid, micronised pigment, and is used industrially as a wood preservative. All three emulsions exhibited shear thinning characteristics at different temperatures. The viscosity-shear rate relationships follow a modified Quemada model. A temperature-superposition method using the reduced variables / and t c was applied to yield a master plot for each of these emulsions at different temperatures. The effect of creosote concentration on the viscosity of four other o/w emulsions at different temperatures was also studied. The same reduced variables were able to produce a temperature-concentration superposition plot for all of the o/w emulsion results.The effective (average) radius of the globules (dispersed phase) was found to increase with increasing temperature for the base w/o and the PEC emulsion. The collision theory could be used to explain the increase in the droplet size. However, while little overall variation in globule size was observed for the o/w emulsions, microscopic observation indicated an increase in the proportion of large diameter droplets with temperature at the highest creosote concentration (60%). A creaming effect (phase concentration) was observed with these emulsions at higher temperatures, precluding an accurate estimate of droplet size based on collision theory.Seconded from Koppers Coal Tar Products, Newcastle, N.S.W., Australia.  相似文献   

14.
An analytical study was made to examine the effect of vascular deformability on the pulsatile blood flow in arterioles through the use of a suitable mathematical model. The blood in arterioles is assumed to consist of two layers — both Newtonian but with differing coefficients of viscosity. The flow characteristics of blood as well as the resistance to flow have been determined using the numerical computations of the resulting expressions. The applicability of the model is illustrated using numerical results based on the existing experimental data. r, z coordinate system - u, axial/longitudinal velocity component of blood - p pressure exerted by blood - b density of blood - µ viscosity of blood - t time - , displacement components of the vessel wall - T t0,T 0 known initial stresses - density of the wall material - h thickness of the vessel wall - T t,T stress components of the vessel - K l,K r components of the spring coefficient - C l,C r components of the friction coefficient - M a additional mass of the mechanical model - r 1 outer radius of the vessel - thickness of the plasma layer - r 1 inner radius of the vessel - circular frequency of the forced oscillation - k wave number - E 0,E t, , t material parameters for the arterial segment - µ p viscosity of the plasma layer - Q total flux - Q p flux across the plasma zone - Q h flux across the core region - Q mean flow rate - resistance to flow - P pressure difference - l length of the segment of the vessel  相似文献   

15.
If the viscosity can be expressed in the form = (T)f(), the walls are at a constant temperatureT 0, and the extra stress, velocity and temperature fields are fully developed, then the wall shear rate can be calculated by applying the Weissenberg-Rabinowitsch operator toF c Q instead of to the flow rateQ, whereF c is a correction factor which differs from 1 when the temperature field is non-uniform; the isothermal equation relating the wall shear stress and pressure gradient is still valid. For the case in whcih = 0|| n /(1 +(TT 0)), wheren, 0, and are independent of shear stress and temperatureT, an exact analytical expression forF c in terms of the Nahme-Griffith numberNa andn is obtained. Use of this expression gives agreement with data obtained for degassed decalin ( = 2.5 mPa s) from a new miniature slit-die viscometer at shear rates up to 5 × 106s–1; here, the correction is only 7%,Na is 1.3, andGz, the Graetz number at the die exit, is 119. For a Cannon standard liquidS6 ( = 9 mPa s), agreement extends up to 5 × 105s–1; at 2×106s–1 (whereNa = 7.2 andGz = 231), the corrections are 11% (measured) and 36% (calculated).Notation x, y Cartesian coordinates - v x ,v velocity inx-direction, dimensionless velocity - p xx ,p yy normal stress onx- andy-planes - N 1 first normal stress difference - shear stress ony-planes acting inx-direction - w value of shear stress at the wall - shear rate, shear rate at the wall - Q, Q flow rate (Eqs. (2.13), (2.15)) - T, T 0 temperature, temperature at the wall - ø, dimensionless temperature (Eqs. (2.24), (2.25)) - h, w half of die height, width of die - R diameter of a tube - , 0 viscosity, viscosity atT = T 0 - viscosity-temperature coefficient - k thermal conductivity - c p specific heat at constant pressure - n, m dimensionless parameters characterizing shear stress dependence of viscosity - Na Nahme Griffith number (Eq. (2.21)) - Gz Graetz number (Eq. (5.1)) - F c viscous heating correction factor (Eq. (2.18)) - ( ) a function characterizing temperature dependence of viscosity (Eq. (2.8)) - J k ( ) Bessel function of the first kind This paper is dedicated to Professor Hanswalter Giesekus on the occasion of his retirement as Editor of Rheologica Acta.  相似文献   

16.
An experimental investigation was undertaken to study the apparent thickening behavior of dilute polystyrene solutions in extensional flow. Among the parameters investigated were molecular weight, molecular weight distribution, concentration, thermodynamic solvent quality, and solvent viscosity. Apparent relative viscosity was measured as a function of wall shear rate for solutions flowing from a reservoir through a 0.1 mm I.D. tube. As increased, slight shear thinning behavior was observed up until a critical wall shear rate was exceeded, whereupon either a large increase in or small-scale thickening was observed depending on the particular solution under study. As molecular weight or concentration increased, decreased and, the jump in above , increased. increased as thermodynamic solvent quality improved. These results have been interpreted in terms of the polymer chains undergoing a coil-stretch transition at . The observation of a drop-off in at high (above ) was shown to be associated with inertial effects and not with chain fracture due to high extensional rates.  相似文献   

17.
This paper studies the slow flow of powders. It is argued that since powders can flow like liquids, there must be equations similar to those of liquids. The phenomenon of a variable density, dilatancy, is described by an analogue of temperature called the compactivity X. Whereas, in thermal physicsT = E/S, powders are controlled byX = V/S. The equations for, v, T of a liquid are replaced by, v, X. An analogy for free energy is described, and the solution to some simple problems of packing and mixing are offered. As an example of rheology, it is shown that the simplest flow equations produce a transition to plug flow in appropriate circumstances.Delivered as a Gold Medal Lecture at the Golden Jubilee Conference of the British Society of Rheology and Third European Rheology Conference, Edinburgh, 3–7 September, 1990.  相似文献   

18.
A mathematical model was developed to describe the behavior of Herschel-Bulkley fluids in a back extrusion (annular pumping) device. A technique was also developed to determine the rheological properties (yield stress, flow behavior index, and consistency coefficient) of these fluids. Mathematical terms were expressed in four dimensionless terms, and graphical aids and tables were prepared to facilitate the handling of the expressions.Nomenclature a radius of the plunger, m - dv/dr shear rate, s–1 - F force applied to the plunger, N - F b buoyancy force, N - F cb force corrected for buoyancy, N - F T recorded force just before the plunger is stopped, N - F Te recorded force after the plunger is stopped, N - g acceleration due to gravity, m/s2 - H(t) momentary height between plunger and container bottom, m - K a/R, dimensionless - L length of annular region, m - L(t) depth of plunger penetration, m - n flow behavior index, dimensionless - p static pressure, Pa - P L pressure in excess of hydrostatic pressure at the plunger base, Pa - p 0 pressure at entrance to annulus, Pa - P pressure drop per unit of length, Pa/m - Q total volumetric flow rate through the annulus, m3/s - r radial coordinate, measured from common axis of cylinder forming annulus, m - R radius of outer cylinder of annulus, m - s reciprocal of n, dimensionless - t time, s - T dimensionless shear stress, defined in Eq. (3) - T 0 dimensionless yield stress, defined in Eq. (4) - T w dimensionless shear stress at the plunger wall - p velocity of plunger, m/s - velocity, m/s - mass density of fluid, kg/m3 - Newtonian viscosity, Pa s - P p 0 p L , Pa - consistency coefficient, Pa sn - value of where shear stress is zero - , + limits of the plug flow region (Fig. 1) - r/R - shear stress, Pa - y yield stress, Pa - w shear stress at the plunger wall, Pa - dimensionless flow rate defined in Eq. (24) - dimensionless velocity defined by Eq. (5) - , + dimensionless velocity outside the plug flow region - max dimensionless maximum velocity in the plug flow region - p dimensionless velocity at the plunger wall  相似文献   

19.
The pseudoplastic flow of suspensions, alumina or styrene-acrylamide copolymer particles in water or an aqueous solution of glycerin has been studied by the step-shear-rate method. The relation between the shear rate,D, and the shear stress,, in the step-shear-rate measurements, where the state of dispersion was considered to be constant, was expressed as = AD 1/2 +CD. The effective solid volume fraction,ø F, andA were dependent on the shear rate and expressed byø F =aD b andA = D . Combining the above relations, the steady flow curve was expressed by = D 1/2 + + 0 (1 – a D b/0.74)–1.85 D, where 0 is the viscosity of the medium.With an increase in solid volume fraction and a decreases in the absolute value of the-potential, the flow behavior of the suspensions changed from Newtonian ( = = b = 0), slightly pseudoplastic ( = b = 0), pseudoplastic ( = 0) to a Bingham-like behavior.The change in viscosity of the medium had an effect on the change in the effective volume fraction.  相似文献   

20.
Gelatin gel properties have been studied through the evolution of the storage [G()] and the loss [G()] moduli during gelation or melting near the gel point at several concentrations. The linear viscoelastic properties at the percolation threshold follow a power-law G()G() and correspond to the behavior described by a rheological constitutive equation known as the Gel Equation. The critical point is characterized by the relation: tan = G/G = cst = tan ( · /2) and it may be precisely located using the variations of tan versus the gelation or melting parameter (time or temperature) at several frequencies. The effect of concentration and of time-temperature gel history on its variations has been studied. On gelation, critical temperatures at each concentration were extrapolated to infinite gel times. On melting, critical temperatures were determined by heating step by step after a controlled period of aging. Phase diagrams [T = f(C)] were obtained for gelation and melting and the corresponding enthalpies were calculated using the Ferry-Eldridge relation. A detailed study of the variations of A with concentration and with gel history was carried out. The values of which were generally in the 0.60–0.72 range but could be as low as 0.20–0.30 in some experimental conditions, were compared with published and theoretical values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号