首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lipophilic bis-substituted ester and ether derivatives of benzo-15-crown-5 have been synthesised. The correlation between the structure and potentiometric ion-selectivity has been studied in PVC membrane ion-selective electrodes. An ion-selective potassium sensitive electrode based on 4,5-bis (biphenyloxymethyl)benzo-15-crown-5 exhibited the best electrode properties. The detection limit was loga K = -5.4; logK K,Na ppot = -3.5. The effect of the lipophilicity of neutral carriers upon electrode performance has been also discussed.  相似文献   

2.
Data for coated-wire, ion selective electrodes (ISEs) are presented for cationic surfactant ions found in common cleaners including benzyldimethyltetradecylammonium, benzyldimethyldodecylammonium, and benzyldimethylhexadecylammonium. The ion exchangers dinonylnaphthalene sulfonic acid, tetraphenyborate, and tetrakis(4-chlorophenyl)borate are examined, showing dinonylnaphthalene sulfonic acid to be the favored species. The ISEs exhibit approximately Nernstian behavior down to the 10−6 M limit of detection with lifetimes in excess of 50 days when used continuously, and a shelf life of over 100 days. Reaching the upper detection limit at the critical micelle concentration requires use of polymeric-membrane reference electrodes including a new membrane cocktail, which allow response measurements of an order of magnitude higher than the traditional fritted-glass reference electrode. The surfactant ISEs show excellent selectivity over the common metal ions Na+, K+, Mg2+, Ca2+, and Cu2+ with selectivity coefficients less than 10−5.3. The ISEs are also selective over the lower molecular weight quaternary ammonium ions tetradecyltrimethylammonium, dodecyltrimethylammonium, benzyldimethyl(2-hydroxyethyl)ammonium, and tetrabutylammonium with selectivity coefficients ranging from 10−1.7 to 10−5.5. Use of a single electrode to determine accurately the total cationic surfactant concentration in common cleaning solutions is accomplished with information about concentration dependent interferences and a modified Nikolsky–Eisenman model. Finally, quaternary ammonium surfactants have a deleterious effect on the measurements of pH and common ions like K+, Mg2+ and Ca2+ with polymeric ISEs. This makes it critical to include surfactant electrodes in a detector array when cleaning agents are present.  相似文献   

3.
Four polyvinyl chloride (PVC) membrane sensors for the determination of hyoscine butylbromide are described and characterized. The sensors are based on the use of the ion association complexes of hyoscine cation with ammonium reineckate counter anions as ion exchange sites in the PVC matrix. The membranes incorporate ion association complexes of hyoscine with dibutylsebathete (sensor 1), dioctylphthalate (sensor 2), nitrophenyl octyl ether (sensor 3) and β-cyclodextrin (sensor 4). The performance characteristics of these sensors were evaluated according to IUPAC recommendations, which reveal a fast, stable and linear response for hyoscine over the concentration range of 10−5-10−2 M for sensors 1 and 2 and 10−6-10−2 for sensors 3 and 4 with cationic slopes of −53.19, −55.17, −51.44 and −51.51 mV per concentration decade for the four sensors, respectively. The direct potentiometric determination of hyoscine butylbromide using the proposed sensors gave average recoveries % of 99.92 ± 1.11, 99.93 ± 1.00, 99.94 ± 1.18 and 99.87 ± 1.39 for the four sensors, respectively. The sensors are used for determination of hyoscine butylbromide in laboratory prepared mixtures, pharmaceutical formulations in combination with ketoprofen and in plasma. Validation of the method shows suitability of the proposed sensors for use in the quality control assessment of hyoscine butylbromide. The developed method was found to be simple, accurate and precise when compared with a reported HPLC method.  相似文献   

4.
An ion chromatographic method has been developed for the determination of alkali (Li(+), Na(+), K(+)), alkaline earths (Ca(2+), Mg(2+), Ba(2+), Sr(2+)) and ammonium ion in waters. The usual difficulties encountered during traditional cation-exchange separations (incomplete resolution for Na(+) and NH(4) (+) present in disproportionate concentration ratios) have been overcome tuning the selectivity of the separation by the introduction of 18-crown-6 ether in the mobile phase using an IonPac CS12A (150x3 mm id) column. After a detailed study of the effect of mobile phase components on separation, a gradient elution from 26 mM methanesulphonic acid (MSA) with a step change at 9 min to 60 mM MSA (0.5 mM 18-crown-6) provided the required baseline separation for the eight selected analytes. The method developed provides the advantage of the determination, in the same analytical run, also of strontium and barium, which is usually performed by spectroscopic techniques. Within-day and between-day repeatability have been assessed, observing between-day RSD included between 0.3 and 1.8% for retention times and 0.6 and 7.2% for peak areas. The method has been finally tested for the analysis of water samples of different provenience (well, tanks, water system) and results compared with those obtained by the laboratory in charge of the control of drinking water for the city of Torino (Italy).  相似文献   

5.
《Electroanalysis》2005,17(11):1015-1018
A new pendant‐arm derivative of diaza‐18‐crown‐6, containing two oxime donor groups, has been synthesized and incorporated into a polyvinyl chloride (PVC) membrane ion‐selective electrode. The electrode shows selectivity for Ag+ ion, with a near Nernstian response. Pb2+, Cu2+, Hg2+, and Tl+ are major interfering ions, with Cd2+ having minor interference. The electrode shows no potentiometric response for the ions Mg2+, Al3+, K+, Ca2+, Ni2+, Fe3+, and La3+, and is responsive to H+ at pH<6.  相似文献   

6.
Models of an ion selective electrode involving an ionophore and mobile sites in a membrane are proposed. The first model, called the phase boundary potential model, supposed thermodynamic equilibrium; it allows the concentrations of the various species to be calculated. Then, a kinetic model, which takes into account the ionic transfer at the membrane|solution interfaces, was derived. The impedance of the membrane was calculated. It shows that a membrane with nernstian behavior shows only one capacitive loop in the impedance diagram, which is related to the conductivity and dielectric properties of the material of the membrane. Non-nernstian behavior is related to slow ionic transfer at the membrane|solution interfaces or/and transport limitation of the species in the membrane. Finite rate constants of the ionic transfer lead to a capacitive loop in the middle frequency range, whereas finite rate transport leads to a diffusional impedance in the low frequency range.  相似文献   

7.
Two novel supramolecular aggregations possessing column structures have been prepared from double-armed benzo-15-crown-5 ether (2) and its complex with potassium ion, respectively. Their molecular assembly behavior has been evaluated by calorimetry, 1H NMR, X-ray crystallography and STM images, revealing that the molecular assembly behavior of 2 in the solid state can be controlled by the stepwise sandwiching complexation with the cation.  相似文献   

8.
Poly(vinyl chloride) (PVC)-based membrane of pentathia-15-crown-5 exhibits good potentiometric response for Hg2+ over a wide concentration range (2.51 × 10−5 to 1.00 × 10−1 mol dm−3) with a slope of 32.1 mV per decade of Hg2+ concentration. The response time of the sensor is as fast as 20 s. The electrode has been used for a period of six weeks and exhibits fairly good discriminating ability towards Hg2+ in comparison to alkali, alkaline and some heavy metal ions. The electrode can be used in the pH range from 2.7 to 5.0.  相似文献   

9.
<正>Four 20-membered N_2S_4-monoazathiacrown ethers have been synthesized and explored as neutral ionophores for Ag~+-selective electrodes.Potentiometric responses reveal that the flexibility of the ligands has great effect on the selectivity and sensitivity to Ag~+ ions.The electrode based on ionophore 9,10,20,25-tetrahydro-5H,12H-tribenzo[b,n,r][1,7,10,16,4,13]tetrathiadiaza cycloicosine 6,13-(7H,14H)-dione(C) with 2-nitrophenyl octyl ether(o-NPOE) as solvent in a poly(vinyl chloride)(PVC) membrane matrix shows a measuring range of 1.0×10~(-6) to 1.0×10~(-3) mol/L with a Nernstian slope of 54.9±0.3 mV/decade.This electrode has high selectivity for Ag~+ with negligible interference from many other cations and can be used in a wide pH range of 3.6-9.2.  相似文献   

10.
A highly selective electrode for iodide ion based on a thiopyrilium derivative as an excellent ionophore is described. At pH 5.5-8.0, the electrode responds to iodide ion in a linear range from 1.0×10−1 to 8.0×10−7 M with a slope of 60.2 mV per decade, and a detection limit of 2.0×10−7 M. Selectivity coefficients determined with the match potential method (MPM) indicate that the interference from inorganic and organic anions is very small. The proposed sensor shows a fast response time of approximately 15 s. It was applied as an indicator electrode in titration of iodide with Ag+.  相似文献   

11.
In this study, a new strategy was proposed for the preparation of As (III)-imprinted polymer by using arsenic (methacrylate)3 as template. Precipitation polymerization was utilized to synthesize nano-sized As (III)-imprinted polymer. Methacrylic acid and ethylene glycol dimethacrylate were used as the functional monomer and cross-linking agent, respectively. In order to assembly functional monomers around As (III) ion, sodium arsenite and methacrylic acid were heated in the presence of hydroquinone, leading to arsenic (methacrylate)3. The nano-sized As (III) selective polymer was characterized by FT-IR and scanning electron microscopy techniques (SEM). It was demonstrated that arsenic was recognized as As3+ by the selective cavities of the synthesized IIP. Based on the prepared polymer, the first arsenic cation selective membrane electrode was introduced. Membrane electrode was constructed by dispersion of As (III)-imprinted polymer nanoparticles in poly(vinyl chloride), plasticized with di-nonylphthalate. The IIP-modified electrode exhibited a Nernstian response (20.4 ± 0.5 mV decade−1) to arsenic ion over a wide concentration range (7.0 × 10−7 to 1.0 × 10−1 mol L−1) with a lower detection limit of 5.0 × 10−7 mol L−1. Unlike this, the non-imprinted polymer (NIP)-based membrane electrode was not sensitive to arsenic in aqueous solution. The selectivity of the developed sensor to As (III) was shown to be satisfactory. The sensor was used for arsenic determination in some real samples.  相似文献   

12.
Three platinum(II) complexes were synthesized and studied to characterize their ability as an anion carrier in a PVC membrane electrode. The polymeric membrane electrodes (PME) and also coated glassy carbon electrodes (CGCE) prepared with one of these complexes showed excellent response characteristics to perchlorate ions. The electrodes exhibited Nernstian responses to ClO4 ions over a wide concentration range from 1.5 × 10−6 to 2.7 × 10−1M for PME and 5.0 × 10−7 to 1.9 × 10−1M for CGCE with low detection limits (9.0 × 10−7M for PME and 4.0 × 10−7M for CGCE). The electrodes possess fast response time, satisfactory reproducibility, appropriate lifetime and, most importantly, good selectivity toward ClO4 relative to a variety of other common anions. The potentiometric response of the electrodes is independent of the pH of the test solution in the pH range 2.0–9.0. The proposed sensors were used in potentiometric determination of perchlorate ions in mineral water and urine samples. Correspondence: Ahmad Soleymanpour, Department of Chemistry, Damghan Basic Science University, Damghan, Iran.  相似文献   

13.
SYNTHESISOFLINEARPOLYSILOXANEWITHPENDANT BENZO-15-C-5MOIETIESANDITSTRANPORTPROPERTIESINBULKLIQUIDMEMBRANESYSTEMCHENYuanyin;Lu...  相似文献   

14.
涂碳型PVC膜培氟沙星选择电极的研制   总被引:2,自引:0,他引:2  
报道一种以盐酸培氟沙星与溴汞酸盐生成的分子缔合物为电活性物质的新型涂碳PVC膜培氟沙星选择电极。在pH 1 .5~ 4.5范围内 ,电极对培氟沙星的Nernst响应范围为 1 .0× 1 0 - 2 ~ 5 .0× 1 0 - 5mol/L ,检测限为 4.2× 1 0 - 6mol/L。方法的平均回收率为 98.5 % ,RSD为 1 .0 %  相似文献   

15.
Patil SR  Turmine M  Peyre V  Durand G  Pucci B 《Talanta》2007,74(1):72-77
The construction and performance of a liquid membrane electrode responsive to N-(1,1,2,2-tetrahydroperfluorooctyl)-N,N,N-trimethylammonium bromide (FTABr) and its use for the study of β-cyclodextrin/fluorinated surfactant inclusion complex is described. The electrode is based on the use of tetrahydroperfluorooctyltrimethylammonium-tetraphenylborate ion pair as electro active material in polyvinyl chloride (PVC) matrix plasticized using 2-Nitrophenyl octyl ether (NPOE). The electrode exhibits a fast, stable, reproducible and “Nernstian” response (59 ± 2 mV) for FTABr over the concentration range of 10−5 to 2 × 10−3 mol L−1 at 298 K. The lowest detection limit is 2 × 10−6 mol L−1 and the response time is around 20-30 s. The validity of the electrode, for detection of fluorinated surfactant ions and hence to carry out electrochemical measurements to study micellization of fluorinated surfactant, is verified by comparing the critical micelle concentration (cmc) value of FTABr obtained by using the electrode, with that obtained by surface tension measurements. Association constant K for β-cyclodextrin/FTABr complex is evaluated from the potentiometric measurements carried out using this electrode and is observed to be ∼1.26 × 105. The results suggest that β-cyclodextrin forms an equimolar association complex with the FTA+ surfactant ion.  相似文献   

16.
Two open substituted benzodipyrroles were tested as hydrogen-bond-forming anion ionophores for the development of anion-selective electrodes. These compounds were incorporated in plasticized polymeric membranes with different plasticizers, using different membrane compositions to explore their response towards several anions. The electrodes constructed with membranes containing 2-nitrophenyl octyl ether and a 0.5 molar ratio ionic additive/ionophore showed pronounced anti-Hofmeister behaviour, providing a significantly enhanced response towards the divalent anions sulfate, sulfite, thiosulfate and oxalate. The selected electrodes were also evaluated in terms of detection limits and selectivity. 1H NMR experiments were carried out in an attempt to explain some aspects of the behaviour observed.  相似文献   

17.
Magnesium selective ionophores are described which induce a rejection of Na+ and K+ in solvent polymeric membranes by factors of up to 6300 and 5000, respectively. Depending on the membrane composition, ion selective electrodes may be obtained with equal selectivity for Mg2+ and Ca2+ as well as sensors with a discrimination of Ca2+ by a factor up to 8. Sensors of the type described are candidates for water hardness determination as well as for an Mg2+ assay in blood by chemometric procedures.On leave from the Chemistry Department, University of Warsaw, ul. L. Pasteura 1, PL-02-093 Warsaw, PolandOn leave from the Shanghai University of Technology, 149 Yanchang Road, Shanghai, People's Republic of China  相似文献   

18.
Various mixed liquid crystals containing crown ether‐cholesteryl liquid crystal, benzo‐15‐crown‐5‐COO‐C27H45 (B15C5‐COOCh), with various common cholesteric liquid crystals, e.g., cholesteryl chloride, cholesteryl benzoate and cholesteryl palmitate, were prepared and studied using polarizing microscopy and differential scanning calorimetry. Investigating the concentration effect of B15C5‐COOCh in mixed liquid crystals revealed that the addition of B15C5‐COOCh resulted in wider phase transition temperature ranges of these cholesteryl liquid crystals. The stability of these B15C5‐COOCh/cholesteryl mixed liquid crystals was studied using comprehensive graphic molecular modeling computer programs (Insight II and Discover) to calculate their molecular energy and stability energy. The effect of salts, e.g. Na+, Co3+, Y3+ and La3+, on the transition temperature range of the mixed liquid crystals was also investigated. The crown ether cholesteric liquid crystal B15C5‐COOCh was applied both as a surfactant and an ion transport carrier to transport metal ions through liquid membranes. Cholesteryl benzo‐15‐crown‐5 exhibited distinctive characteristics of a surfactant and the critical micellar concentration (CMC) of the surfactant was investigated by the pyrene fluorescence probe method. Cholesteryl benzo‐15‐crown‐5 was successfully applied as a good ion transport carrier (Ionophore) to transport various metal ions, e.g. Li+, Na+, La3+, Fe3+ and Co3+, through organic liquid membranes. The transport ability of the cholesteryl benzo‐15‐crown‐5 surfactant for these metal ions was in the order: Co3+ ≥ Li+ > Fe3+ > Na+ > La3+.  相似文献   

19.
To date, poly(vinyl chloride) (PVC) is the most used polymer in the design of ion selective electrode (ISE) membranes. This paper is focused on the use of sulfonated poly(ether ether ketone) (SPEEK) as an alternative material to PVC for the design of ISEs. SPEEK of the desired degree of sulfonation is synthesized from poly(ether ether ketone) (PEEK). An NH4+-ISE has been chosen as a model electrode to study the efficiency of SPEEK as polymer matrix of the membrane. The material was evaluated in ionophore free ion exchanger membranes as well as in ion-selective electrodes membranes containing nonactine as ionophore. Analytical performance parameters of the prepared electrodes were evaluated. The electrodes show a slope between 50 and 60 mV dec−1 depending on both the calibration medium and the membrane composition. A linear range of response between 10−4 and 1.0 M and a lifetime of 1-2 months were obtained. The interferences of cations such us Ca2+, Na+, Li+ and K+ over the prepared ISEs are studied as well. Although the plasticizer in the SPEEK based membrane matrix is not necessary, its presence improves the sensibility. This makes SPEEK a good potential choice over alternative membrane matrices reported in the literature and a promising platform for the establishment of membrane components.  相似文献   

20.
Five new bis(benzo-15-crown-5) derivatives with different connecting groups were synthesized. Potassium ion-selective PVC membrane electrodes based on these bis(crown ether)s were prepared and their selective properties were measured. The results showed that most of these electrodes are stable over a wide pH range and their selectivity coefficients were better than those of an electrode based on natural valinomycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号