首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of 3,5-dimethyl-1H-pyrazole (P1), pyridine (P2) and 2-(3-methyl-1H-pyrazol-5-yl) pyridine (P3) on the corrosion inhibition of steel in molar hydrochloric acid solution is studied using weight-loss, potentiodynamic and EIS measurements. Results obtained shows that P3 is the best inhibitor and its inhibition efficiency increases with the increase of concentration to attain 89% since 10−3 M. Potentiodynamic polarisation studies clearly reveal that it acts essentially as a cathodic inhibitor. The inhibitor studied reduces the corrosion rates. E (%) values obtained from various methods used are in good agreement. Adsorption of P3 on steel surface has an S-shaped adsorption isotherm.  相似文献   

2.
The effect of addition of 1,3-bis(3-hyroxymethyl-5-methyl-1-pyrazole) propane (M = 264 g). HMPP on steel corrosion in 0.5 M sulphuric acid is studied by weight-loss, electrochemical polarisation and electrochemical impedance spectroscopy (EIS) measurements at various temperatures. The results obtained showed that HMPP acts as a good corrosion inhibitor. The inhibition efficiency increases with the bipyrazole compound to attain 88%. It acts as a mixed-type inhibitor. Trends in the increase of charge-transfer resistance and decrease of capacitance values also show the adsorption of the molecule on the metal surface. The bipyrazole adsorbs on the steel surface according to the Langmuir isotherm adsorption model. Effect of temperature indicates that inhibition efficiency decreases with temperature between 25 and 85 °C.  相似文献   

3.
Artemisia oil (Ar) is extracted from artemisia herba alba collected in Ain es-sefra-Algeria, and tested as corrosion inhibitor of steel in 2 M H3PO4 using weight loss measurements, electrochemical polarisation and EIS methods. The naturally oil reduces the corrosion rate. The inhibition efficiency was found to increase with oil content to attain 79% at 6 g/l. Ar acts as a cathodic inhibitor. The effect of temperature on the corrosion behaviour of steel indicates that inhibition efficiency of the natural substance decreases with the rise of temperature. The adsorption isotherm of natural product on the steel has been determined.  相似文献   

4.
A new organic compound was synthesised and tested as corrosion inhibitor of steel in phosphoric acid medium using gravimetric, electrochemical polarisation and electrochemical impedance spectroscopy (EIS) measurements. Results obtained show that the inhibitor studied is a good cathodic inhibitor. EIS results show that the change in the impedance parameters (RT and Cdl) with concentration of triphenyltin 2-thiophene carboxylate (TTC) is indicative of the adsorption of molecules leading to the formation of a protective layer on the surface of steel. The effect of the temperature on the steel corrosion in 2 M H3PO4 and with addition of various concentrations of TTC in the range of temperature 298-348 K was studied. The associated apparent activation corrosion energy has been determined.  相似文献   

5.
The corrosion inhibition of 1-(2-pyridylazo)-2-naphthol (PAR) on the corrosion of cold rolled steel in 0.5 M sulfuric acid (H2SO4) was studied using weight loss method and potentiodynamic polarization method. Results obtained revealed that together with chloride ion, PAR is an effective corrosion inhibitor for steel corrosion in sulfuric acid. It was found that for steel corrosion inhibition in the presence of single PAR in sulfuric acid the Temkin adsorption isotherm may be used to explain the adsorption phenomenon. For the mixture of PAR and NaCl used as corrosion inhibitor, however, the Langmuir adsorption isotherm can be used to satisfactorily elucidate the adsorption of mixture of PAR and NaCl. Potentiodynamic polarization studies showed that single PAR mainly acts as a cathodic inhibitor for the corrosion of steel in 0.5 M sulfuric acid. The mixture of PAR and chloride ion, however, acts as a mixed type inhibitor that mainly inhibits cathodic reaction of the steel corrosion in sulfuric acid. By means of electrochemical polarization tests, a desorption potential at ca. −370 mV was observed for the adsorption of mixture of PAR and chloride ion, when potential reaches this value, adsorbed inhibitor molecule heavily departs from the steel surface. For the mixture of PAR and chloride ion, thermodynamic parameters such as adsorption heat, adsorption entropy and adsorption free energy were obtained from experimental data of the temperature studies of the inhibition process at four temperatures ranging from 30 to 45 °C, the kinetic data such as apparent activation energies and pre-exponential factors at different concentrations of the inhibitor were calculated, and the effect of the apparent activation energies and pre-exponential factors on the corrosion rates of cold rolled steel was discussed. The most suitable range of inhibitor concentration was discussed. The inhibitive action was satisfactorily explained by using both thermodynamic and kinetic models. Synergism between chloride ion and PAR was proposed. The results obtained from weight loss and potentiodynamic polarization were in good agreement.  相似文献   

6.
The effect of two pyrazole-type organic compounds, namely ethyl 5,5′-dimethyl-1′H-1,3′-bipyrazole-3 carboxylate (P1) and 3,5,5′-trimethyl-1′H-1,3′-bipyrazole (P2) on the corrosion behaviour of steel in 1 M hydrochloric acid (HCl) solution is investigated at 308 K by weight loss measurements, potentiodynamic polarisation and impedance spectroscopy (EIS) methods. The inhibition efficiencies obtained from cathodic Tafel plots, gravimetric and EIS methods are in good agreement. Results obtained show that the compound P2 is the best inhibitor and its efficiency reaches 84% at 10−3 M. Potentiodynamic polarisation studies show that pyrazolic derivatives are cathodic-type inhibitors and these compounds act on the cathodic reaction without changing the mechanism of the hydrogen evolution reaction. The inhibition efficiency of P2 is temperature-dependent in the range from 308 to 353 K and the associated activation energy has been determined. P2 adsorbs on the steel surface according to Langmuir adsorption model. The calculation of the total partial charge of inhibitor atoms is computed.  相似文献   

7.
Berberine was abstracted from coptis chinensis and its inhibition efficiency on corrosion of mild steel in 1 M H2SO4 was investigated through weight loss experiment, electrochemical techniques and scanning electronic microscope (SEM) with energy disperse spectrometer (EDS). The weight loss results showed that berberine is an excellent corrosion inhibitor for mild steel immersed in 1 M H2SO4. Potentiodynamic curves suggested that berberine suppressed both cathodic and anodic processes for its concentrations higher than 1.0 × 10−4 M and mainly cathodic reaction was suppressed for lower concentrations. The Nyquist diagrams of impedance for mild steel in 1 M H2SO4 containing berberine with different concentrations showed one capacitive loop, and the polarization resistance increased with the inhibitor concentration rising. A good fit to Flory-Huggins isotherm was obtained between surface coverage degree and inhibitor concentration. The surface morphology and EDS analysis for mild steel specimens in sulfuric acid in the absence and presence of the inhibitor also proved the results obtained by the weight loss and electrochemical experiments. The correlation of inhibition effect and molecular structure of berberine was then discussed by quantum chemistry study.  相似文献   

8.
The inhibition of the corrosion of carbon steel in 1 M HClO4 by 2-mercapto-1-methylimidazole (MMI) has been investigated in relation to the concentration of the inhibitor as well as the temperature using weight loss and electrochemical measurements. The effect of the temperature on the corrosion behaviour with addition of different concentrations of MMI was studied in the temperature range 30-60 °C. Polarization curves reveal that MMI is a mixed type inhibitor. The inhibition efficiency of MMI is temperature independent but increases with the inhibitor concentration. Changes in impedance parameters (charge transfer resistance, Rt, and double-layer capacitance, Cdl) were indicative of adsorption of MMI on the metal surface, leading to the formation of a protective film. Adsorption of MMI on the carbon steel surface is found to obey the Langmuir adsorption isotherm. Some thermodynamic functions of dissolution and adsorption processes were also determined. The X-ray photoelectron spectroscopy (XPS) of the carbon steel indicated that MMI is chemically adsorbed on the steel surface. Moreover, the electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels and molecular orbital densities were calculated.  相似文献   

9.
The synergistic inhibition between 4-(2-pyridylazo) resorcin (PAR) and chloride ion on the corrosion of cold rolled steel in 1.0 M phosphoric acid was studied using weight loss and potentiodynamic polarization method. Results obtained revealed that single PAR is not an effective inhibitor for steel corrosion in phosphoric acid, but in the presence of chloride ion, PAR may act as a good inhibitor due to the synergism. It is found that the adsorption of PAR accords with the Langmuir adsorption isotherm in the absence and presence of chloride ion. Potentiodynamic polarization studies show that PAR is an anodic inhibitor for steel in 1.0 M phosphoric acid, and with addition of chloride ion PAR acts as a mixed type inhibitor. The experimental temperature ranges from 30 to 45 °C. The kinetic data such as apparent activation energies and pre-exponential factors at different concentrations of the inhibitor were calculated, and the effect of the apparent activation energies and pre-exponential factors on the corrosion rates of cold rolled steel was discussed. The inhibitive action was satisfactorily explained by using kinetic models.  相似文献   

10.
Novel corrosion inhibitors, namely 1-{2-[(2-hydroxyethyl)thio]ethyl}pyrrolidin-2-one (P5) and {[2-(2-oxopyrrolidin-1-yl)ethyl]thio}acetic acid (P4), were synthesised and tested as corrosion inhibitors for steel in 0.5 M H2SO4. The effects of P4 and P5 are also compared to their initial reactants 1-vinylpyrrolidin-2-one (P1), 2-mercaptoethanol (P2) and mercaptoacetic acid (P3). The study was carried out by weight loss measurements, potentiodynamic polarisation, linear polarisation resistance (Rp) and electrochemical impedance spectroscopy (EIS) methods. The inhibition efficiency increases with the concentration of P5 to attain 89% at 5 × 10−3 M. We note good agreement between the various methods explored. Polarisation measurements show also that the pyrrolidones act essentially as cathodic inhibitors. The cathodic curves indicate that the reduction of proton at the steel surface is an activating mechanism. P4 and P5 adsorb on the steel surface according to Langmuir adsorption model. Effect of temperature is also studied in the 298-353 K range. Efficiency is explained by the theoretical studies.  相似文献   

11.
The effect of addition of 4′,4-dihydroxychalcone (P1), 4-aminochalcone (P2) and 4-bromo, 4′-methoxychalcone (P3) on the corrosion of steel in 0.5 M sulphuric acid has been studied by weight loss measurements, potentiodynamic and EIS measurements. We investigate the synergistic effect of iodide ions on the corrosion inhibition of steel in the presence of chalcone derivatives. The corrosion rates of the steel decrease with the increase of the chalcones concentration, while the inhibition efficiencies increase. The addition of iodide ions enhances the inhibition efficiency considerably. The presence of iodide ions increases the degree of surface coverage. The synergism parameters SΘ and SI, calculated from surface coverage and the values of inhibition efficiency, in the case of chalcone derivatives are found to be larger than unity. The enhanced inhibition efficiency in the presence of iodide ions is only due to synergism and there is a definite contribution from the inhibitors molecules. E (%) obtained from the various methods is in good agreement. Polarisation measurements show also that the compounds act as cathodic inhibitors.  相似文献   

12.
The optical properties of Tl4Ga3InSe8 layered single crystals have been studied by means of transmission and reflection measurements in the wavelength range of 500–1100 nm. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 1.94 and 2.20 eV, respectively. Transmission measurements carried out in the temperature range of 10–300 K revealed that the rate of change of the indirect band gap with temperature is γ=−4.1×10−4 eV/K. The absolute zero value of the band gap energy was obtained as Egi(0)=2.03 eV. The dispersion of the refractive index is discussed in terms of the Wemple–DiDomenico single-effective-oscillator model. The refractive index dispersion parameters: oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index were found to be 4.10 eV, 23.17 eV, 6.21×1013 m−2 and 2.58, respectively. From X-ray powder diffraction study, the parameters of monoclinic unit cell were determined.  相似文献   

13.
The inhibition effect of the new pyridazine derivative, namely 1,4-bis(2-pyridyl)-5H-pyridazino[4,5-b]indole (PPI) against mild steel corrosion in 1 M HCl solutions was evaluated using weigh loss and electrochemical techniques (potentiodynamic polarisation curves and impedance spectroscopy). The experimental results suggest that PPI is a good corrosion inhibitor and the inhibition efficiency increased with the increase of PPI concentration, while the adsorption followed the Langmuir isotherm. X-ray photoelectron spectroscopy (XPS) and theoretical calculation of electronic density were carried out to establish the mechanism of corrosion inhibition of mild steel with PPI in 1 M HCl medium. The inhibition action of this compound was, assumed to occur via adsorption on the steel surface through the active centres contained of the molecule. The corrosion inhibition is due to the formation of a chemisorbed film on the steel surface.  相似文献   

14.
A new corrosion inhibitor, namely 2,2′-bis(benzimidazole) has been synthesised and its inhibiting action on the corrosion of mild steel in acidic bath (1 M HCl) has been investigated by various corrosion monitoring techniques, such as corrosion weight loss test and potentiodynamic polarisation. The results of the investigation show that this compounds have fairly good inhibiting properties for steel corrosion in hydrochloric acid, and is a mixed inhibitor in (1 M HCl). The adsorption of this inhibitor is also found to obey the Langmuir adsorption isotherm.  相似文献   

15.
The inhibition action of a non-ionic surfactant of tween-40 on the corrosion of cold rolled steel (CRS) in 0.5-7.0 M sulphuric acid (H2SO4) was studied by weight loss and potentiodynamic polarization methods. Atomic force microscope (AFM) provided the surface conditions. The inhibition efficiency increases with the tween-40 concentration, while decreases with the sulphuric acid concentration. The adsorption of inhibitor on the cold rolled steel surface obeys the Langmuir adsorption isotherm equation. Effect of immersion time was studied and discussed. The effect of temperature on the corrosion behavior of cold rolled steel was also studied at four temperatures ranging from 30 to 60 °C, the thermodynamic parameters such as adsorption heat, adsorption free energy and adsorption entropy were calculated. A kinetic study of cold rolled steel in uninhibited and inhibited acid was also discussed. The kinetic parameters such as apparent activation energy, pre-exponential factor, rate constant, and reaction constant were calculated for the reactions of corrosion. The inhibition effect is satisfactorily explained by both thermodynamic and kinetic parameters. Polarization curves show that tween-40 is a cathodic-type inhibitor in sulphuric acid. The results obtained from weight loss and potentiodynamic polarization are in good agreement, and the tween-40 inhibition action could also be evidenced by surface AFM images.  相似文献   

16.
The inhibitive action of some thiadiazole derivatives, namely 2,5-bis(2-thienyl)-1,3,4-thiadiazole (2-TTH) and 2,5-bis(3-thienyl)-1,3,4-thiadiazole (3-TTH) against the corrosion of mild steel in 0.5 M H2SO4 solution has been investigated using weight loss measurements, Tafel polarisation and electrochemical impedance spectroscopy (EIS) techniques. The experimental results obtained revealed that these compounds inhibited the steel corrosion in acid solution. The protection efficiency increased with increasing inhibitors concentration and the ability of the molecule to adsorb on the steel surface was dependent on the position of the sulphur atom on the thienyl substituent. Inhibition efficiency values obtained from various methods employed were in reasonable agreement. Potentiodynamic polarisation studies clearly showed that 2-TTH and 3-TTH acted as mixed inhibitors. Adsorption of these inhibitors on steel surface obeyed to Langmuir adsorption isotherm. X-ray photoelectron spectroscopy and the thermodynamic data of adsorption showed that inhibition of steel corrosion in normal sulphuric solution by n-TTH is due to the formation of a chemisorbed film on the steel surface. Molecular modelling was used to gain some insight, about structural and electronic effects in relation to the inhibiting efficiencies.  相似文献   

17.
The polycrystalline sample of LiFe1/2Ni1/2VO4 was prepared by a standard solid-state reaction technique and confirmed by X-ray diffractometry. LiFe1/2Ni1/2VO4 has orthorhombic crystal structure whose dielectric and electric modulus properties were studied over a wide frequency range (100 Hz–1 MHz) at different temperatures (296–623 K) using a complex impedance spectroscopy (CIS) technique. The frequency and temperature dependence of dielectric constant (εr) and tangent loss (tan δ) of LiFe1/2Ni1/2VO4 are studied. The variation of εr as a function frequency at different temperatures exhibits a dispersive behavior at low frequencies. The variation of the εr as a function of temperature at different frequencies shows the dielectric anomaly in εr at 498 K with maximum value of dielectric constant 274.49 and 96.86 at 100 kHz and 1 MHz, respectively. Modulus analysis was carried out to understand the mechanism of the electrical transport process, which indicates the non-exponential type of conductivity relaxation in the material. The activation energy calculated from electric modulus spectra is 0.38 eV.  相似文献   

18.
The efficiency, as steel-corrosion inhibitors in 0.1 M and 1 M H2SO4, of two Schiff bases, 2-{[(4-methoxyphenyl)imino]methyl}phenol and 1-{[(4-methoxyphenyl)imino]methyl}-2-naphthol, (abbreviated SB-1 and SB-2, respectively) was investigated by Tafel extrapolation and linear polarization methods. Corrosion parameters and adsorption isotherms were determined from current-potential curves. It was found that the percent inhibition efficiencies (η%) and surface coverage (θ) increase with an increases in the concentrations of inhibitors. The results showed that these compounds act as good corrosion inhibitors especially at high concentrations. The adsorption of used compounds on the steel surface obeys Langmuir's isotherm. Obvious correlation was found between corrosion inhibition efficiency and quantum chemical parameters obtained by B3LYP/6-31g(d) method. The obtained theoretical results have been compared with the experimental findings.  相似文献   

19.
The inhibiting properties of four macrocyclic cobalt(III) complexes of the general formula [CoIII(Rdtc)cyclam](ClO4)2, where cyclam and Rdtc refer to 1,4,8,11-tetraazacyclotetradecane and morpholine-, thiomorpholine-, piperazine-, N-methylpiperazine-dithiocarbamates, respectively, has been studied on the corrosion of iron in aerated 0.1 M HClO4 solutions by potentiodynamic polarization (dc) technique and electrochemical impedance spectroscopy (ac). Inhibitor efficiency for the corrosion of iron is found to be better for cobalt complexes then for related amino-ligands. The impedance increases with inhibitor concentration. Polarization curves indicate that the inhibitors are predominantly mixed-type. Better protection by the complex inhibitors was obtained with longer immersion time. The best fit for inhibitors adsorption is obtained using the Langmuir isotherm model. Molecular modeling calculations were used to correlate structural properties of the complex species and their inhibition efficiency.  相似文献   

20.
Metallic corrosion is the destructive attack of a metal by its environment. Organic inhibitors, amongst others, adsorb directly onto the surface of the metal and can thus inhibit corrosion. Chitosan, tri-methyl chitosan and dodecyl amine hydrochloride were studied with a view to assessing their potential use as adsorption inhibitors for mild steel in acid chloride and sulphate solutions. The inhibition efficiency was studied successfully by potentiostatic polarisation (Tafel plots), Mössbauer spectroscopy (CEMS and transmission) and corrosion experiments in static acidified electrolytes. Inhibition efficiencies ranged from 20 to 93%. The chemical compositions of the corrosion products were determined by means of Mössbauer spectroscopy, which identified iron hydroxides as the main corrosion products forming in the presence of the inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号