首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Hierarchical roughness is known to effectively reduce the liquid-solid contact area and water droplet adhesion on superhydrophobic surfaces, which can be seen for example in the combination of submicrometer and micrometer scale structures on the lotus leaf. The submicrometer scale fine structures, which are often referred to as nanostructures in the literature, have an important role in the phenomenon of superhydrophobicity and low water droplet adhesion. Although the fine structures are generally termed as nanostructures, their actual dimensions are often at the submicrometer scale of hundreds of nanometers. Here we demonstrate that small nanometric structures can have very different effect on surface wetting compared to the large submicrometer scale structures. Hierarchically rough superhydrophobic TiO(2) nanoparticle surfaces generated by the liquid flame spray (LFS) on board and paper substrates revealed that the nanoscale surface structures have the opposite effect on the droplet adhesion compared to the larger submicrometer and micrometer scale structures. Variation in the hierarchical structure of the nanoparticle surfaces contributed to varying droplet adhesion between the high- and low-adhesive superhydrophobic states. Nanoscale structures did not contribute to superhydrophobicity, and there was no evidence of the formation of the liquid-solid-air composite interface around the nanostructures. Therefore, larger submicrometer and micrometer scale structures were needed to decrease the liquid-solid contact area and to cause the superhydrophobicity. Our study suggests that a drastic wetting transition occurs on superhydrophobic surfaces at the nanometre scale; i.e., the transition between the Cassie-Baxter and Wenzel wetting states will occur as the liquid-solid-air composite interface collapses around nanoscale structures. Consequently, water adheres tightly to the surface by penetrating into the nanostructure. The droplet adhesion mechanism presented in this paper gives valuable insight into a phenomenon of simultaneous superhydrophobicity and high water droplet adhesion and contributes to a more detailed comprehension of superhydrophobicity overall.  相似文献   

2.
Many natural superhydrophobic structures have hierarchical two-tier roughness which is empirically known to promote robust superhydrophobicity. We report the wetting and dewetting properties of two-tier roughness as a function of the wettability of the working fluid, where the surface tension of water/ethanol drops is tuned by the mixing ratio, and compare the results to one-tier roughness. When the ethanol concentration of deposited drops is gradually increased on one-tier control samples, the impalement of the microtier-only surface occurs at a lower ethanol concentration compared to the nanotier-only surface. The corresponding two-tier surface exhibits a two-stage wetting transition, first for the impalement of the microscale texture and then for the nanoscale one. The impaled drops are subsequently subjected to vibration-induced dewetting. Drops impaling one-tier surfaces could not be dewetted; neither could drops impaling both tiers of the two-tier roughness. However, on the two-tier surface, drops impaling only the microscale roughness exhibited a full dewetting transition upon vibration. Our work suggests that two-tier roughness is essential for preventing catastrophic, irreversible wetting of superhydrophobic surfaces.  相似文献   

3.
Water striders are a type of insect with the remarkable ability to stand effortlessly and walk quickly on water. This article reports the water repellency mechanism of water strider legs. Scanning electron microscope (SEM) observations reveal the uniquely hierarchical structure on the legs, consisting of numerous oriented needle-shaped microsetae with elaborate nanogrooves. The maximal supporting force of a single leg against water surprisingly reaches up to 152 dynes, about 15 times the total body weight of this insect. We theoretically demonstrate that the cooperation of nanogroove structures on the oriented microsetae, in conjunction with the wax on the leg, renders such water repellency. This finding might be helpful in the design of innovative miniature aquatic devices and nonwetting materials.  相似文献   

4.
Superhydrophobicity of biological surfaces has recently been studied intensively with the aim to design artificial surfaces. It has been revealed that nearly all of the superhydrophobic surfaces consist of the intrinsic hierarchical structures. However, the role of such structures has not been completely understood. In this study, different scales of hierarchical structures have been thermodynamically analyzed using a 2-D model. In particular, the free energy (FE) and free energy barrier (FEB) for the composite wetting states are calculated, and the effects of relative pillar height (h(r)) and relative pillar width (a(r)) on contact angle (CA) and contact angle hysteresis (CAH) have been investigated in detail. The results show that if the geometrical parameter ratio is the same (e.g., a:b:h = 2:2:1), the equilibrium CA for the composite of the three-, dual-, and single- scale roughness structures is 159.8°, 151.1°, and 138.6°, respectively. Furthermore, the nano- to microstructures of such surfaces can split a large FEB into many small ones and hence can decrease FEB; in particular, a hierarchical geometrical structure can lead to a hierarchical "FEB structure" (e.g., for a dual-scale roughness geometrical structure, there is also a dual-scale FEB structure). This is especially important for a droplet to overcome the large FEBs to reach a stable superhydrophobic state, which can lead to an improved self-cleaning property. Moreover, for extremely small droplets, the secondary or third structure (i.e., submicrostructure or nanostructure) can play a dominant role in resisting the droplets into troughs, so that a composite state can be always thermodynamically favorable for such a hierarchical structured system.  相似文献   

5.
Submersed superhydrophobic surfaces exhibit great potential for reducing flow resistance in microchannels and drag of submersed bodies. However, the low stability of liquid-air interfaces on those surfaces limits the scope of their application, especially under high liquid pressure. In this paper, we first investigate the wetting states on submersed hydrophobic surfaces with one-level structure under hydrostatic pressure. Different equilibrium states based on free-energy minimization are formulated, and their stabilities are analyzed as well. Then, by comparison with the existing numerical and experimental studies, we confirm that a new metastable state, which happens after depinning of the three-phase contact line (TCL), exists. Finally, we show that a strategy of using hierarchical structures can strengthen the TCL pinning of the liquid-air interface in the metastable state. Therefore, the hierarchical structure on submersed surfaces is important to further improve the stability of superhydrophobicity under high liquid pressure.  相似文献   

6.
The mechanics of fibrillar adhesive surfaces of biological systems such as a Lotus leaf and a gecko are widely studied due to their unique surface properties. The Lotus leaf is a model for superhydrophobic surfaces, self-cleaning properties, and low adhesion. Gecko feet have high adhesion due to the high micro/nanofibrillar hierarchical structures. A nanostructured surface may exhibit low adhesion or high adhesion depending upon fibrillar density, and it presents the possibility of realizing eco-friendly surface structures with desirable adhesion. The current research, for the first time uses a patterning technique to fabricate smart adhesion surfaces: single- and two-level hierarchical synthetic adhesive structure surfaces with various fibrillar densities and diameters that allows the observation of either the Lotus or gecko adhesion effects. Contact angles of the fabricated structured samples were measured to characterize their wettability, and contamination experiments were performed to study for self-cleaning ability. A conventional and a glass ball attached to an atomic force microscope (AFM) tip were used to obtain the adhesive forces via force-distance curves to study scale effect. A further increase of the adhesive forces on the samples was achieved by applying an adhesive to the surfaces.  相似文献   

7.
Li Y  Zheng M  Ma L  Zhong M  Shen W 《Inorganic chemistry》2008,47(8):3140-3143
Grid-structured ZnO microsphere arrays assembled by uniform ZnO nanorods were fabricated by noncatalytic chemical vapor deposition, taking advantage of morphologies of alumina nanowire pyramid substrates and ZnO oriented growth habits. Every ZnO microsphere (similar to the micropapilla on a lotus leaf surface) is assembled by over 200 various oriented ZnO nanorods (similar to the hairlike nanostructures on mircopapilla of a lotus leaf). This lotus-leaf-like ZnO micro-nanostructure films reveal superhydrophobicity and ultrastrong adhesive force to liquid. The realization of this hierarchical ZnO nanostructure film could be important for further understanding wettability of biological surfaces with micro-nanostructure and application in microfluidic devices.  相似文献   

8.
Superhydrophobic surfaces are biomimetic structures with potential applications in several key technological areas. In the past decade, several top-down and bottom-up fabrication methods have been developed to create such surfaces. These typically combine a hierarchical structure and low surface energy coatings to increase the contact angle and decrease the rolling angles. Silicon-based superhydrophobic surfaces are particularly attractive since they can be integrated with active electronics in order to protect them from the detrimental effects of environmental water and moisture. In this work, we introduce a simple and inexpensive process incorporating electrochemical surface modification (to create a fractal shape micro-nano topography) in combination with a final wet etching step to fabricate a superhydrophobic silicon surface with a contact angle of 160 degrees and a sliding angle of less than 1 degree.  相似文献   

9.
Oil/water separation polyurethane sponge with hierarchically structured surface similar to the chemical/topological structures of lotus leaf has been successfully developed by combining mussel-inspired one-step copolymerization approach. The chemical structure, surface topography, and surface wettability of the sponge were characterized by FTIR, SEM, and contact angle experiments, respectively. The results showed that as-prepared sponge exhibited high oil absorption rate because of the expansion in oil and collapse in water of the polymer molecular brushes. Meanwhile, it also possessed high absorption capacity (20 times of the self-weight), high oil retention (93.7%), and good recyclability. It had excellent potential in practical applications.  相似文献   

10.
Dynamic effects of bouncing water droplets on superhydrophobic surfaces   总被引:1,自引:0,他引:1  
Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water repellent properties. Superhydrophobic surfaces may be generated by the use of hydrophobic coating, roughness, and air pockets between solid and liquid. Dynamic effects, such as the bouncing of a droplet, can destroy the composite solid-air-liquid interface. The relationship between the impact velocity of a droplet and the geometric parameters affects the transition from the solid-air-liquid interface to the solid-liquid interface. Therefore, it is necessary to study the dynamic effect of droplets under various impact velocities. We studied the dynamic impact behavior of water droplets on micropatterned silicon surfaces with pillars of two different diameters and heights and with varying pitch values. A criterion for the transition from the Cassie and Baxter regime to the Wenzel regime based on the relationship between the impact velocity and the parameter of patterned surfaces is proposed. The trends are explained based on the experimental data and the proposed transition criterion. For comparison, the dynamic impact behavior of water droplets on nanopatterned surfaces was investigated. The wetting behavior under various impact velocities on multiwalled nanotube arrays also was investigated. The physics of wetting phenomena for bouncing water droplet studies here is of fundamental importance in the geometrical design of superhydrophobic surfaces.  相似文献   

11.
Polyimide is of great interest in the field of MEMS and microtechnology. It is often used for its chemical, thermal, mechanical, and optical properties. In this paper, an original study is performed on controlled variation of polyimide film wettability. A two-step microtexturing method is developed to transform hydrophilic polyimide surfaces into a superhydrophobic surface with low magnitude of hysteresis (Δθ ≈ 0° and contact angle θ ≈ 158°). This method is based on the conception of a new kind of fakir surface with triangular cross-section micropillars, the use of a two-scale roughening, and a C(4)F(8) coating. We demonstrate that the absence of hysteresis is related to a combination of two scales of structuring and the pillar shape. The technology that has been developed results in the simultaneous fabrication of adjacent superhydrophobic and superhydrophilic small areas, which allows an effect of self-positioning of water droplets when deposited on such a checkerboard-like surface.  相似文献   

12.
Superhydrophobic surfaces were obtained on copper and galvanized iron substrates by means of a simple solution-immersion process: immersing the clean metal substrates into a methanol solution of hydrolyzed 1H,1H,2H,2H-perfluorooctyltrichlorosilane (CF3(CF2)5(CH2) 2SiCl3, FOTMS) for 3-4 days at room temperature and then heated at 130 degrees C in air for 1 h. Both of the resulting surfaces have a high water contact angle (CA) of larger than 150.0 degrees as well as a small sliding angle (SA) of less than 5 degrees . The formation and structure of the superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectrometry (EDX). SEM images showed that both of the resulting surfaces exhibited special hierarchical structure. The special hierarchical structure along with the low surface energy leads to the high surface superhydrophobicity.  相似文献   

13.
Neutron reflectivity (NR) is used to probe the solid, liquid, vapor interface of a porous superhydrophobic (SH) surface submerged in water. A low-temperature, low-pressure technique was used to prepare a rough, highly porous organosilica aerogel-like film. UV/ozone treatments were used to control the surface coverage of hydrophobic organic ligands on the silica framework, allowing the contact angle with water to be continuously varied over the range of 160 degrees (superhydrophobic) to <10 degrees (hydrophilic). NR shows that the superhydrophobic nature of the surface prevents infiltration of water into the porous film. Atomic force microscopy and density functional theory simulations are used in combination to interpret the NR results and help establish the location, width, and nature of the SH film-water interface.  相似文献   

14.
The utilization of vertically aligned smooth gold nanorod arrays with and without nanoporous tip architectures as superhydrophobic surfaces is described. Nanoporous architecture was produced on the tips of nanorods by selectively dissolving less noble components from the alloy nanorods. The resulting nanoscopic dual-size roughness features enhanced the surface dewettability after surface modification with low-surface-energy materials such as long-chain normal alkanethiols and fluorinated organic compounds. The surface cleaning properties were also tested with a rolling water droplet.  相似文献   

15.
16.
Abstract

Aquatic microrobots, which can walk freely on water mimicking water striders, have attracted considerable interest among scientists in biomimetic area. Most of previous water strider robots adopted gear pairs as their driving mechanism, which called for high assembly precision and thereby increased the processing difficulty. Here, a novel and simple method using servos as the driving module to prepare water walking robot was proposed. We fabricated this robot by using supporting and actuating legs with excellent superhydrophobicity. Our robot weighted 27.9?g, but could float and run quickly driven by mini-type servos under remote Bluetooth control in mobile terminal. The legs were obtained on Al substrates by chemical etching, boiling-water immersion and low surface energy modification. Then, surface morphology and chemical compositions were subsequently investigated by SEM, EDS and XRD. In order to better illustrate the floating and rowing mechanism of this robot on the water surface, mechanics analysis models were proposed to analyze the lifting force and resistance force, respectively. Due to its excellent floating capacity and rowing ability, the biomimetic robot has promising application potential in water quality monitoring, aquatic exploration, and other surveillance missions.  相似文献   

17.
Wetting studies regarding amphiphilic molecules and adsorption properties on highly water repellent solid surfaces play key roles in research and technology, with increasing interest both in fundamental and application fields. Nevertheless the wetting properties of aqueous surfactant solutions, non aqueous liquids or immiscible phases on superhydrophobic (SH) solid surfaces have been so far rarely investigated. In this work the authors give an overview on this topic reviewing the literature available together with preliminary results concerning the influence of the distribution properties of surfactants between two immiscible phases. Transition between wetting states can be also considered a possible development of these studies based on switching mechanisms.  相似文献   

18.
A typical superhydrophobic (ultrahydrophobic) surface can repel water droplets from wetting itself, and the contact angle of a water droplet resting on a superhydrophobic surface is greater than 150°, which means extremely low wettability is achievable on superhydrophobic surfaces. Many superhydrophobic surfaces (both manmade and natural) normally exhibit micro- or nanosized roughness as well as hierarchical structure, which somehow can influence the surface's water repellence. As the research into superhydrophobic surfaces goes deeper and wider, it is becoming more important to both academic fields and industrial applications. In this work, the most recent progress in preparing manmade superhydrophobic surfaces through a variety of methodologies, particularly within the past several years, and the fundamental theories of wetting phenomena related to superhydrophobic surfaces are reviewed. We also discuss the perspective of natural superhydrophobic surfaces utilized as mimicking models. The discussion focuses on how the superhydrophobic property is promoted on solid surfaces and emphasizes the effect of surface roughness and structure in particular. This review aims to enable researchers to perceive the inner principles of wetting phenomena and employ suitable methods for creation and modification of superhydrophobic surfaces.  相似文献   

19.
Silicon is employed in a variety of electronic and optical devices such as integrated circuits, photovoltaics, sensors, and detectors. In this paper, Au-assisted etching of silicon has been used to prepare superhydrophobic surfaces that may add unique properties to such devices. Surfaces were characterized by contact angle and contact angle hysteresis. Superhydrophobic surfaces with reduced hysteresis were prepared by Au-assisted etching of pyramid-structured silicon surfaces to generate hierarchical surfaces. Consideration of the Laplace pressure on hydrophobized hierarchical surfaces gives insight into the manner by which contact is established at the liquid/composite surface interface. Light reflectivity from the etched surfaces was also investigated to assess application of these structures to photovoltaic devices.  相似文献   

20.
The fabrication of a superhydrophobic surface is demonstrated via a wet chemical route, and this method offers advantages of being cleanroom free, cost efficiency, and wide applicability. The preferable growth of ZnO crystalline forms a microstructured surface, and a variety of alkanoic acids were adopted to tune the surface wettability. Although all surfaces show an advancing contact angle greater than 150 degrees , they substantially differ in the wetting mechanisms. It is found that only when the length of alkanoic acid is greater than 16, the microstructured surface shows a stable superhydrophobicity, in which the Cassie state dominates. While for those moderate-length alkanoic acids (C8-C14), their corresponding surfaces have a tendency to fall into the Wenzel state and display a great contact angle hysteresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号