首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The di-Zn(II) complex of 1,3-bis[ N1, N1'-(1,5,9-triazacyclododecyl)]propane with an associated methoxide ( 3:Zn(II) 2: (-)OCH 3) was prepared and its catalysis of the methanolysis of a series of fourteen methyl aryl phosphate diesters ( 6) was studied at s (s)pH 9.8 in methanol at 25.0 +/- 0.1 degrees C. Plots of k obs vs [ 3:Zn(II) 2: (-)OCH 3] free for all members of 6 show saturation behavior from which K(M) and kcat (max) were determined. The second order rate constants for the catalyzed reactions (kcat (max)/K(M)) for each substrate are larger than the corresponding methoxide catalyzed reaction (k 2 (-OMe)) by 1.4 x 10(8) to 3 x 10 (9)-fold. The values of k cat (max) for all members of 6 are between 4 x 10(11) and 3 x 10(13) times larger than the solution reaction at s (s)pH 9.8, with the largest accelerations being given for substrates where the departing aryloxy unit contains ortho-NO 2 or C(O)OCH 3 groups. Based on the linear Br?nsted plots of k cat (max) vs s (s)pKa of the phenol, beta lg values of -0.57 and -0.34 are determined respectively for the catalyzed methanolysis of "regular" substrates that do not contain the ortho-NO 2 or C(O)OCH 3 groups, and those substrates that do. The data are consistent with a two step mechanism for the catalyzed reaction with rate limiting formation of a catalyst-coordinated phosphorane intermediate, followed by fast loss of the aryloxy leaving group. A detailed energetics calculation indicates that the catalyst binds the transition state comprising [CH 3O (-): 6], giving a hypothetical [ 3:Zn(II) 2:CH 3O (-): 6] complex, by -21.4 to -24.5 kcal/mol, with the strongest binding being for those substrates having the ortho-NO 2 or C(O)OCH 3 groups.  相似文献   

2.
Methanol solutions containing Cd(II), Mn(II), and a palladacycle, (dimethanol bis(N,N-dimethylbenzylamine-2C,N)palladium(II) (3), are shown to promote the methanolytic transesterification of O-methyl O-4-nitrophenyl phosphorothioate (2b) at 25 °C with impressive rate accelerations of 10(6)-10(11) over the background methoxide promoted reaction. A detailed mechanistic investigation of the methanolytic cleavage of 2a-d having various leaving group aryl substitutions, and particularly the 4-nitrophenyl derivative (2b), catalyzed by Pd-complex 3 is presented. Plots of k(obs) versus palladacycle [3] demonstrate strong saturation binding to form 2b:3. Numerical fits of the kinetic data to a universal binding equation provide binding constants, K(b), and first order catalytic rate constants for the methanolysis reaction of the 2b:3 complex (k(cat)) which, when corrected for buffer effects, give corrected (k(cat)(corr)) rate constants. A sigmoidal shaped plot of log(k(cat)(corr)) versus (s)(s)pH (in methanol) for the cleavage of 2b displays a broad (s)(s)pH independent region from 5.6 ≤ (s)(s)pH ≤ 10 with a k(minimum) = (1.45 ± 0.24) × 10(-2) s(-1) and a [lyoxide] dependent wing plateauing above a kinetically determined (s)(s)pK(a) of 12.71 ± 0.17 to give a k(maximum) = 7.1 ± 1.7 s(-1). Br?nsted plots were constructed for reaction of 2a-d at (s)(s)pH 8.7 and 14.1, corresponding to reaction in the midpoints of the low and high (s)(s)pH plateaus. The Br?nsted coefficients (β(LG)) are computed as -0.01 ± 0.03 and -0.86 ± 0.004 at low and high (s)(s)pH, respectively. In the low (s)(s)pH plateau, and under conditions of saturating 3, a solvent deuterium kinetic isotope effect of k(H)/k(D) = 1.17 ± 0.08 is observed; activation parameters (ΔH(Pd)(++) = 14.0 ± 0.6 kcal/mol and ΔS(Pd)(++)= -20 ± 2 cal/mol·K) were obtained for the 3-catalyzed cleavage reaction of 2b. Possible mechanisms are discussed for the reactions catalyzed by 3 at low and high sspH. This catalytic system is shown to promote the methanolytic cleavage of O,O-dimethyl phosphorothioate in CD3OD, producing (CD3O)2P═O(S(-)) with a half time for reaction of 34 min.  相似文献   

3.
Rate coefficients for the reactions of hydroxyl radicals and chlorine atoms with methyl crotonate and ethyl crotonate have been determined at 298 K and atmospheric pressure. The decay of the organics was monitored using gas chromatography with flame ionization detection (GC-FID), and the rate constants were determined using the relative rate method with different reference compounds. Room temperature rate coeficcients were found to be (in cm(3) molecule(-1) s(-1)): k(1)(OH + CH(3)CH═CHC(O)OCH(3)) = (4.65 ± 0.65) × 10(-11), k(2)(Cl + CH(3)CH═CHC(O)OCH(3)) = (2.20 ± 0.55) × 10(-10), k(3)(OH + CH(3)CH═CHC(O)OCH(2)CH(3)) = (4.96 ± 0.61) × 10(-11), and k(4)(Cl + CH(3)CH═CHC(O)OCH(2)CH(3)) = (2.52 ± 0.62) × 10(-10) with uncertainties representing ±2σ. This is the first determination of k(1), k(3), and k(4) under atmospheric pressure. The rate coefficients are compared with previous determinations for other unsaturated and oxygenated VOCs and reactivity trends are presented. In addition, a comparison between the experimentally determined k(OH) with k(OH) predicted from k vs E(HOMO) relationships is presented. On the other hand, product identification under atmospheric conditions has been performed for the first time for these unsaturated esters by the GC-MS technique in NO(x)-free conditions. 2-Hydroxypropanal, acetaldehyde, formaldehyde, and formic acid were positively observed as degradation products in agreement with the addition of OH to C2 and C3 of the double bond, followed by decomposition of the 2,3- or 3,2-hydroxyalkoxy radicals formed. Atmospheric lifetimes, based on of the homogeneous sinks of the unsaturated esters studied, are estimated from the kinetic data obtained in the present work.  相似文献   

4.
Human glutathione transferase A1-1 (hGST A1-1) can be reengineered by rational design into a catalyst for thiolester hydrolysis with a catalytic proficiency of 1.4 x 10(7) M(-1). The thiolester hydrolase, A216H that was obtained by the introduction of a single histidine residue at position 216 catalyzed the hydrolysis of a substrate termed GSB, a thiolester of glutathione and benzoic acid. Here we investigate the substrate requirements of this designed enzyme by screening a thiolester library. We found that only two thiolesters out of 18 were substrates for A216H. The A216H-catalyzed hydrolysis of GS-2 (thiolester of glutathione and naphthalenecarboxylic acid) exhibits a k(cat) of 0.0032 min(-1) and a KM of 41 microM. The previously reported catalysis of GSB has a k(cat) of 0.00078 min(-1) and KM of 5 microM. The k(cat) for A216H-catalyzed hydrolysis of GS-2 is thus 4.1 times higher than for GSB. The catalytic proficiency (k(cat)/KM)/k(uncat) for GS-2 is 3 x 10(6) M(-1). The promiscuous feature of the wt protein towards a range of different substrates has not been conserved in A216H but we have obtained a selective enzyme with high demands on the substrate.  相似文献   

5.
On the basis of a kinetic study and other evidence, we propose a mechanism of activation and operation of a highly active system generated from the precatalyst trans-[Fe(CO)(Br)(Ph(2)PCH(2)CH═N-((S,S)-C(Ph)H-C(Ph)H)-N═CHCH(2)PPh(2))][BPh(4)] (2) for the asymmetric transfer hydrogenation of acetophenone in basic isopropanol. An induction period for catalyst activation is observed before the catalytic production of 1-phenethanol. The activation step is proposed to involve a rapid reaction of 2 with excess base to give an ene-amido complex [Fe(CO)(Ph(2)PCH(2)CH═N-((S,S)-C(Ph)H-C(Ph)H)-NCH═CHPPh(2))](+) (Fe(p)) and a bis(enamido) complex Fe(CO)(Ph(2)PCH═CH-N-(S,S-CH(Ph)CH(Ph))-N-CH═CHPPh(2)) (5); 5 was partially characterized. The slow step in the catalyst activation is thought to be the reaction of Fe(p) with isopropoxide to give the catalytically active amido-(ene-amido) complex Fe(a) with a half-reduced, deprotonated PNNP ligand. This can be trapped by reaction with HCl in ether to give, after isolation with NaBPh(4), [Fe(CO)(Cl)(Ph(2)PCH(2)CH(2)N(H)-((S,S)-CH(Ph)CH(Ph))-N═CHCH(2)PPh(2))][BPh(4)] (7) which was characterized using multinuclear NMR and high-resolution mass spectrometry. When compound 7 is treated with base, it directly enters the catalytic cycle with no induction period. A precatalyst with the fully reduced P-NH-NH-P ligand was prepared and characterized by single crystal X-ray diffraction. It was found to be much less active than 2 or 7. Reaction profiles obtained by varying the initial concentrations of acetophenone, precatalyst, base, and acetone and by varying the temperature were fit to the kinetic model corresponding to the proposed mechanism by numerical simulation to obtain a unique set of rate constants and thermodynamic parameters.  相似文献   

6.
The rate constant of the reaction Cl + CF(3)CF═CH(2) (k(1)) has been measured relative to several reference species using the relative rate technique with either gas chromatographic analysis with flame-ionization detection (GC/FID) or Fourier transform infrared (FTIR) analysis. Cl atoms were generated by UV irradiation of Cl(2)/CF(3)CF═CH(2)/reference/N(2)/O(2) mixtures. At 300-400 K in the presence of >20 Torr O(2), k(1) = 1.2 × 10(-11) e((+1100/RT)) cm(3) molecule(-1) s(-1). In N(2) diluent, k(1) has a sharp negative temperature coefficient resulting from the relatively small exothermicity of the following reactions: (1a) Cl + CF(3)CF═CH(2) ? CF(3)CFClCH(2)(?); (1b) Cl + CF(3)CF═CH(2) ? CF(3)CF(?)CH(2)Cl (reaction 1), which were determined in these experiments to be ~16.5 (±2.0) kcal mol(-1). This low exothermicity causes reaction 1 to become significantly reversible even at ambient temperature. The rate constant ratio for the reaction of the chloroalkyl radicals formed in reaction 1 with Cl(2) (k(2)) or O(2) (k(3)) was measured to be k(2)/k(3) = 0.4 e(-(3000/RT)) for 300-400 K. At 300 K, k(2)/k(3) = 0.0026. The reversibility of reaction 1 combined with the small value of k(2)/k(3) leads to a sensitive dependence of k(1) on the O(2) concentration. Products measured by GC/FID as a function of temperature are CF(3)CFClCH(2)Cl, CF(3)COF, and CH(2)Cl(2). The mechanism leading to these products is discussed. The rate constant for the reaction Cl + CF(3)CFClCH(2)Cl (k(11)) was measured as a function of temperature (300-462 K) at 760 Torr to be k(11) = 8.2 × 10(-12) e(-(4065/RT)) cm(3) molecule(-1) s(-1). Rate constants relative to CH(4) for the reactions of Cl with the reference compounds CH(3)Cl, CH(2)Cl(2), and CHCl(3) were measured at 470 K to resolve a literature discrepancy. (R = 1.986 cal K(-1) mol(-1)).  相似文献   

7.
In anhydrous CH3CN a series of nine 4-(4-substituted-benzoyl)-N-methylpyridinium cations (substituent: -OCH3, -CH3, -H, -SCH3, -Br, -Ctbd1;CH, -CHO, -NO2, and -(+)S(CH3)2) demonstrate two chemically reversible, well-separated one-electron (1-e) reductions in the same potential range as other main stream redox catalysts such as quinones and viologens. Hammett linear free energy plots yield excellent correlation between the E(1/2) values of both waves and the substituent constants sigma(p)(-)(X). The reaction constants for the two 1-e reductions are rho(1) = 2.60 and rho(2) = 3.31. The lower rho(1) value is associated with neutralization of the pyridinium ring, and the higher rho(2) value with the negative charge developing during the 2nd-e reduction. Structure-function correlations point to a purely inductive role for substitution in both 1-e reductions. The case of the 4-(4-nitrobenzoyl)-N-methylpyridinium cation is particularly noteworthy, because the 4-nitrobenzoyl moiety undergoes reduction before the 2nd reduction of the 4-benzoyl-N-methylpyridinium system. Correlation of the third wave of this compound with the 2nd-e reduction of the others yields sigma(p)(-NO)2*- = -0.97 +/- 0.02, thus placing the -NO2-* group among the strongest electron donors. Solvent deuterium isotope effects and maps of the electrostatic potential (via PM3 calculations) as a function of substitution support that 2-e reduced forms develop H-bonding with proton donors (e.g., CH3OH) via the O-atom. The average number of CH3OH molecules entering the H-bonding association increases with e-donating substituents. H-bonding shifts the 2nd reduction wave closer to the first one. This has important practical implications, because it increases the equilibrium concentration of the 2-e reduced form from disproportionation of the 1-e reduced form.  相似文献   

8.
Functionalization of multivalent structures such as dendrimers and monolayer passivated nanoparticles with catalytically active groups results in very potent catalysts, a phenomenon described as the positive dendritic effect. Here, we describe a series of peptide dendrons and dendrimers of increasing generation functionalized at the periphery with triazacyclononane, a ligand able to form a strong complex with Zn(II). Kinetic studies show that these metallodendrimers very efficiently catalyze the cleavage of the RNA model compound HPNPP, with dendrimer D32 exhibiting a rate acceleration of around 80,000 (kcat/k(uncat)) operating at a concentration of 600 nM. A theoretical model was developed to explain the positive dendritic effect displayed by multivalent catalysts in general. A detailed analysis of the saturation profile and the Michaelis-Menten parameters kcat and KM shows that it is not necessary to ascribe the positive dendritic effect to, for instance, changes in the catalytic site, increased substrate binding constant, or changes in the microenvironment. Rather it appears that the efficient catalytic behavior of multivalent catalysts is mainly determined by two factors: the number of catalytic sites occupied by substrate molecules under saturation conditions, and the efficiency of the multivalent system to generate catalytic sites in which multiple catalytic units act cooperatively on the substrate.  相似文献   

9.
Measurements of rate constants and substituent effects for three important elementary steps of proton-transfer reactions of phenylnitromethane were reported. The Hammett ρ values for the deprotonation of ArCH(2)NO(2) with OH(-), protonation of ArCH═NO(2)(-) with H(2)O, and protonation of ArCH═NO(2)(-) with HCl were determined in aqueous MeOH at 25 °C. Comparison of these experimentally observed ρ values with those calculated at B3LYP/6-31G* revealed that aci-nitro species (ArCH═NO(2)H), which is formed on the O-protonation of ArCH═NO(2)(-), does not lie on the main route of the proton-transfer reaction. Analysis of the Br?nsted plot implies that the proton-transfer reaction of most XC(6)H(4)CH(2)NO(2) exhibits nitroalkane anomaly, but not for p-NO(2)C(6)H(4)CH(2)NO(2), and that the transition state charge imbalance is an origin of anomaly.  相似文献   

10.
A dinuclear Cu(II) complex of 1,3-bis-N(1)-(1,5,9-triazacyclododecyl)propane with an associated methoxide (2-Cu(II)(2):(-OCH(3))) was prepared, and its kinetics of reaction with an RNA model (2-hydroxypropyl-p-nitrophenyl phosphate (1, HPNPP)) and two DNA models (methyl p-nitrophenyl phosphate (3) and iso-butyl p-chlorophenyl phosphate (4)) were studied in methanol solution at (s)(s)pH 7.2 +/- 0.2. X-ray diffraction structures of 2-Cu(II)(2):(-OH)(H(2)O)(CF(3)SO(3)-)(3):0.5CH(3)CH(2)OCH(2)CH(3) and 2-Cu(II)(2):(-OH)((C(6)H(5)CH(2)O)(2)PO(2)-)(CF(3)SO(3)-)2 show the mode of coordination of the bridging -OH and H(2)O between the two Cu(II) ions in the first complex and bridging -OH and phosphate groups in the second. The kinetic studies with 1 and 3 reveal some common preliminary steps prior to the chemical one of the catalyzed formation of p-nitrophenol. With 3, and also with the far less reactive substrate (4), two relatively fast events are cleanly observed via stopped-flow kinetics. The first of these is interpreted as a binding step which is linearly dependent on [catalyst] while the second is a unimolecular step independent of [catalyst] proposed to be a rearrangement that forms a doubly Cu(II)-coordinated phosphate. The catalysis of the cleavage of 1 and 3 is very strong, the first-order rate constants for formation of p-nitrophenol from the complex being approximately 0.7 s(-1) and 2.4 x 10(-3) s(-1), respectively. With substrate 3, 2-Cu(II)(2):(-OCH(3)) exhibits Michaelis-Mentin kinetics with a k(cat)/K(M) value of 30 M(-1) s(-1) which is 3.8 x 10(7)-fold greater than the methoxide promoted reaction of 3 (7.9 x 10(-7) M(-1) s(-1)). A free energy calculation indicates that the binding of 2-Cu(II)(2):(-OCH(3)) to the transition states for 1 and 3 cleavage stabilizes them by -21 and -24 kcal/mol, respectively, relative to that of the methoxide promoted reactions. The results are compared with a literature example where the cleavage of 1 in water is promoted by a dinuclear Zn(II) catalyst, and the energetic origins of the exalted catalysis of the 2-Cu(II)(2) and 2-Zn(II)(2) methanol systems are discussed.  相似文献   

11.
Analogues of the ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(methylene)bis((pyridin-2-ylmethyl)azanediyl)diethanol (CH(3)H(3)L1) are described. Complexation of these analogues, 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol (CH(3)HL2), 4-bromo-2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (BrHL2), 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (NO(2)HL2) and 4-methyl-2,6-bis(((2-phenoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (CH(3)HL3) with zinc(II) acetate afforded [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(BrL2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(CH(3)L3)(CH(3)COO)(2)](PF(6)), in addition to [Zn(4)(CH(3)L2)(2)(NO(2)C(6)H(5)OPO(3))(2)(H(2)O)(2)](PF(6))(2) and [Zn(4)(BrL2)(2)(PO(3)F)(2)(H(2)O)(2)](PF(6))(2). The complexes were characterized using (1)H and (13)C NMR spectroscopy, mass spectrometry, microanalysis, and X-ray crystallography. The complexes contain either a coordinated methyl- (L2 ligands) or phenyl- (L3 ligand) ether, replacing the potentially nucleophilic coordinated alcohol in the previously reported complex [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)). Functional studies of the zinc complexes with the substrate bis(2,4-dinitrophenyl) phosphate (BDNPP) showed them to be competent catalysts with, for example, [Zn(2)(CH(3)L2)](+), k(cat) = 5.70 ± 0.04 × 10(-3) s(-1) (K(m) = 20.8 ± 5.0 mM) and [Zn(2)(CH(3)L3)](+), k(cat) = 3.60 ± 0.04 × 10(-3) s(-1) (K(m) = 18.9 ± 3.5 mM). Catalytically relevant pK(a)s of 6.7 and 7.7 were observed for the zinc(II) complexes of CH(3)L2(-) and CH(3)L3(-), respectively. Electron donating para-substituents enhance the rate of hydrolysis of BDNPP such that k(cat)p-CH(3) > p-Br > p-NO(2). Use of a solvent mixture containing H(2)O(18)/H(2)O(16) in the reaction with BDNPP showed that for [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), as well as [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)), the (18)O label was incorporated in the product of the hydrolysis suggesting that the nucleophile involved in the hydrolysis reaction was a Zn-OH moiety. The results are discussed with respect to the potential nucleophilic species (coordinated deprotonated alcohol versus coordinated hydroxide).  相似文献   

12.
Rate coefficients, k, for the gas-phase reactions of Cl atoms and NO(3) radicals with 2,3,3,3-tetrafluoropropene, CF(3)CF═CH(2) (HFO-1234yf), and 1,2,3,3,3-pentafluoropropene, (Z)-CF(3)CF═CHF (HFO-1225ye), are reported. Cl-atom rate coefficients were measured in the fall-off region as a function of temperature (220-380 K) and pressure (50-630 Torr; N(2), O(2), and synthetic air) using a relative rate method. The measured rate coefficients are well represented by the fall-off parameters k(0)(T) = 6.5 × 10(-28) (T/300)(-6.9) cm(6) molecule(-2) s(-1) and k(∞)(T) = 7.7 × 10(-11) (T/300)(-0.65) cm(3) molecule(-1) s(-1) for CF(3)CF═CH(2) and k(0)(T) = 3 × 10(-27) (T/300)(-6.5) cm(6) molecule(-2) s(-1) and k(∞)(T) = 4.15 × 10(-11) (T/300)(-0.5) cm(3) molecule(-1) s(-1) for (Z)-CF(3)C═CHF with F(c) = 0.6. Reaction product yields were measured in the presence of O(2) to be (98 ± 7)% for CF(3)C(O)F and (61 ± 4)% for HC(O)Cl in the CF(3)CF═CH(2) reaction and (108 ± 8)% for CF(3)C(O)F and (112 ± 8)% for HC(O)F in the (Z)-CF(3)CF═CHF reaction, where the quoted uncertainties are 2σ (95% confidence level) and include estimated systematic errors. NO(3) reaction rate coefficients were determined using absolute and relative rate methods. Absolute measurements yielded upper limits for both reactions between 233 and 353 K, while the relative rate measurements yielded k(3)(295 K) = (2.6 ± 0.25) × 10(-17) cm(3) molecule(-1) s(-1) and k(4)(295 K) = (4.2 ± 0.5) × 10(-18) cm(3) molecule(-1) s(-1) for CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF, respectively. The Cl-atom reaction with CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF leads to decreases in their atmospheric lifetimes and global warming potentials and formation of a chlorine-containing product, HC(O)Cl, for CF(3)CF═CH(2). The NO(3) reaction has been shown to have a negligible impact on the atmospheric lifetimes of CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF. The energetics for the reaction of Cl, NO(3), and OH with CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF in the presence of O(2) were investigated using density functional theory (DFT).  相似文献   

13.
A methoxide-bridged dinuclear Zn(II) complex of 1,3-[N,N'-bis(1,5,9-triazacyclododecane)]propane (1-Zn(II)2:(-OCH3)) was prepared, and its catalysis of the cyclization of a series of 2-hydroxypropyl aryl phosphates (4a-g) was investigated in methanol at pH 9.8, T = 25degreesC by stopped-flow spectrophotometry. An X-ray diffraction structure of the hydroxide analogue of 1-Zn(II)2:(-OCH3), namely 1-Zn(II)2:(-OH), reveals that each of the Zn(II) ions is coordinated by the three N's of the triazacyclododecane units and a bridging hydroxide. The cyclizations of substrates 4a-g reveal a progressive change in the observed kinetics from Michaelis-Menten saturation kinetics for the poorer substrates (4-OCH3 (4g); 4-H (4f); 3-OCH3 (4e); 4-Cl (4d); 3-NO2, (4c)) to second-order kinetics (linear in 1-Zn(II)2:(-OCH3)) for the better substrates (4-NO2,3-CH3 (4b); 4-NO2, (4a)). The data are analyzed in terms of a multistep process whereby a first formed complex rearranges to a reactive complex with a doubly activated phosphate coordinated to both metal ions. The kinetic behavior of the series is analyzed in terms of change in rate-limiting step for the catalyzed reaction whereby the rate-limiting step for the poorer substrates (4g-c) is the chemical step of cyclization of the substrate, while for the better substrates (4b,a) the rate-limiting step is binding. The catalysis of the cyclization of these substrates is extremely efficient. The kcat/KM values for the catalyzed reactions range from 2.75 x 10(5) to 2.3 x 10(4) M-1 s-1, providing an acceleration of 1 x 10(8) to 4 x 10(9) relative to the methoxide reaction (k2OCH3, which ranges from 2.6 x 10(-3) to 5.9 x 10(-6) M-1 s-1 for 4a-g). At a pH of 9.8 where the catalyst is maximally active, the acceleration for the substrates ranges from (1 - 4) x 10(12) relative to the background reaction at the same pH. Detailed energetics calculations show that the transition state for the catalyzed reaction comprising 1-Zn(II)2, methoxide, and 4 is stabilized by about -21 to -23 kcal/mol relative to the transition state for the methoxide reaction. The pronounced catalytic activity is attributed to a synergism between a positively charged catalyst that has high affinity for the substrate and for the transition state for cyclization, and a medium effect involving a reduced polarity/dielectric constant that complements a reaction where an oppositely charged reactant and catalyst experience charge dispersal in the transition state.  相似文献   

14.
Presented herein is the design of a dinuclear Ni(II) synthetic hydrolase [Ni(2)(HBPPAMFF)(μ-OAc)(2)(H(2)O)]BPh(4) (1) (H(2)BPPAMFF = 2-[(N-benzyl-N-2-pyridylmethylamine)]-4-methyl-6-[N-(2-pyridylmethyl)aminomethyl)])-4-methyl-6-formylphenol) to be covalently attached to silica surfaces, while maintaining its catalytic activity. An aldehyde-containing ligand (H(2)BPPAMFF) provides a reactive functional group that can serve as a cross-linking group to bind the complex to an organoalkoxysilane and later to the silica surfaces or directly to amino-modified surfaces. The dinuclear Ni(II) complex covalently attached to the silica surfaces was fully characterized by different techniques. The catalytic turnover number (k(cat)) of the immobilized Ni(II)Ni(II) catalyst in the hydrolysis of 2,4-bis(dinitrophenyl)phosphate is comparable to the homogeneous reaction; however, the catalyst interaction with the support enhanced the substrate to complex association constant, and consequently, the catalytic efficiency (E = k(cat)/K(M)) and the supported catalyst can be reused for subsequent diester hydrolysis reactions.  相似文献   

15.
Peptide dendrimers built by iteration of the diamino acid dendron Dap-His-Ser (His = histidine, Ser = Serine, Dap = diamino propionic acid) display a strong positive dendritic effect for the catalytic hydrolysis of 8-acyloxypyrene 1,3,6-trisulfonates, which proceeds with enzyme-like kinetics in aqueous medium (Delort, E.; Darbre, T.; Reymond, J.-L. J. Am. Chem. Soc. 2004, 126, 15642-3). Thirty-two mutants of the original third generation dendrimer A3 ((Ac-His-Ser)8(Dap-His-Ser)4(Dap-His-Ser)2Dap-His-Ser-NH2) were prepared by manual synthesis or by automated synthesis with use of a Chemspeed PSW1100 peptide synthesizer. Dendrimer catalysis was specific for 8-acyloxypyrene 1,3,6-trisulfonates, and there was no activity with other types of esters. While dendrimers with hydrophobic residues at the core and histidine residues at the surface only showed weak activity, exchanging serine residues in dendrimer A3 against alanine (A3A), beta-alanine (A3B), or threonine (A3C) improved catalytic efficiency. Substrate binding was correlated with the total number of histidines per dendrimer, with an average of three histidines per substrate binding site. The catalytic rate constant kcat depended on the placement of histidines within the dendrimers and the nature of the other amino acid residues. The fastest catalyst was the threonine mutant A3C ((Ac-His-Thr)8(Dap-His-Thr)4(Dap-His-Thr)2Dap-His-Thr-NH2), with kcat = 1.3 min(-1), kcat/k(uncat) = 90'000, KM = 160 microM for 8-bytyryloxypyrene 1,3,6-trisulfonate, corresponding to a rate acceleration of 18'000 per catalytic site and a 5-fold improvement over the original sequence A3.  相似文献   

16.
The catalytic ability of a dinuclear Zn2+ complex of 1,3-bis-N1-(1,5,9-triazacyclododecyl)propane (3) in promoting the cleavage of an RNA model, 2-hydroxypropyl-p-nitrophenyl phosphate (HPNPP, 1), and a DNA model, methyl p-nitrophenyl phosphate (MNPP, 4), was studied in methanol solution in the presence of added CH3O- at 25 degrees C. The di-Zn2+ complex (Zn2 :3), in the presence of 1 equiv of added methoxide, exhibits a second-order rate constant of (2.75 +/- 0.10) x 10(5) M(-1) s(-1) for the reaction with 1 at s(s)pH 9.5, this being 10(8)-fold larger than the k2 value for the CH3O- promoted reaction (kOCH3 = (2.56 +/- 0.16) x 10(-3) M(-1) s(-1)). The complex is also active toward the DNA model 4, exhibiting Michaelis-Menten kinetics with a KM and kmax of 0.37 +/- 0.07 mM and (4.1 +/- 0.3) x 10(-2) s(-1), respectively. Relative to the background reactions at s(s)pH 9.5, Zn2 :3 accelerates cleavage of each phosphate diester by a remarkable factor of 1012-fold. A kinetic scheme common to both substrates is discussed. The study shows that a simple model system comprising a dinuclear Zn2+ complex and a medium effect of the alcohol solvent achieves a catalytic reactivity that approaches enzymatic rates and is well beyond anything seen to date in water for the cleavage of these phosphate diesters.  相似文献   

17.
The recombination of CF(2)Cl and CH(2)F radicals was used to prepare CF(2)ClCH(2)F* molecules with 93 ± 2 kcal mol(-1) of vibrational energy in a room temperature bath gas. The observed unimolecular reactions in order of relative importance were: (1) 1,2-ClH elimination to give CF(2)═CHF, (2) isomerization to CF(3)CH(2)Cl by the interchange of F and Cl atoms and (3) 1,2-FH elimination to give E- and Z-CFCl═CHF. Since the isomerization reaction is 12 kcal mol(-1) exothermic, the CF(3)CH(2)Cl* molecules have 105 kcal mol(-1) of internal energy and they can eliminate HF to give CF(2)═CHCl, decompose by rupture of the C-Cl bond, or isomerize back to CF(2)ClCH(2)F. These data, which provide experimental rate constants, are combined with previously published results for chemically activated CF(3)CH(2)Cl* formed by the recombination of CF(3) and CH(2)Cl radicals to provide a comprehensive view of the CF(3)CH(2)Cl* ? CF(2)ClCH(2)F* unimolecular reaction system. The experimental rate constants are matched to calculated statistical rate constants to assign threshold energies for the observed reactions. The models for the molecules and transition states needed for the rate constant calculations were obtained from electronic structures calculated from density functional theory. The previously proposed explanation for the formation of CF(2)═CHF in thermal and infrared multiphoton excitation studies of CF(3)CH(2)Cl, which was 2,2-HCl elimination from CF(3)CH(2)Cl followed by migration of the F atom in CF(3)CH, should be replaced by the Cl/F interchange reaction followed by a conventional 1,2-ClH elimination from CF(2)ClCH(2)F. The unimolecular reactions are augmented by free-radical chemistry initiated by reactions of Cl and F atoms in the thermal decomposition of CF(3)CH(2)Cl and CF(2)ClCH(2)F.  相似文献   

18.
The rates and products of cleavage of methyl (2-chloro-4-nitrophenyl) phosphate (2) promoted by a dinuclear Zn(II) complex (3) of 1,3-bis-N,N'(1,5,9-triazacyclododecyl)propane along with 1 equiv of ethoxide were investigated in ethanol solution containing small amounts of water (8 mM or=1.6 x 10(17) times relative to the background hydroxide reaction, suggesting that complex 3 promotes the hydrolysis at least 1000 times more effectively than ethanolysis.  相似文献   

19.
Electronic structure methods were used to calculate the gas and aqueous phase reaction energies for reductive dechlorination (i.e., hydrogenolysis), reductive β-elimination, dehydrochlorination, and nucleophilic substitution by OH? of 1,2,3-trichloropropane. The thermochemical properties ΔH(f)°(298.15 K), S°(298.15 K, 1 bar), and ΔG(S)(298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely degradation products: CH3?CHCl?CH2Cl, CH2Cl?CH2?CH2Cl, C?H2?CHCl?CH2Cl, CH2Cl?C?H?CH2Cl, CH2═CCl?CH2Cl, cis-CHCl═CH?CH2Cl, trans-CHCl═CH?CH2Cl, CH2═CH?CH2Cl, CH2Cl?CHCl?CH2OH, CH2Cl?CHOH?CH2Cl, CH2═CCl?CH2OH, CH2═COH?CH2Cl, cis-CHOH═CH?CH2Cl, trans-CHOH═CH?CH2Cl, CH(═O)?CH2?CH2Cl, and CH3?C(═O)?CH2Cl. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive β-elimination (ΔG(rxn)° ≈ ?32 kcal/mol), followed closely by reductive dechlorination (ΔG(rxn)° ≈ ?27 kcal/mol), dehydrochlorination (ΔG(rxn)° ≈ ?27 kcal/mol), and nucleophilic substitution by OH? (ΔG(rxn)° ≈ ?25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate C?H2?CHCl?CH2Cl and the CH2Cl?C?H?CH2Cl species, was not favorable in the standard state (ΔG(rxn)° ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely.  相似文献   

20.
The reaction of propene (CH(3)CH═CH(2)) with hydrogen atoms has been investigated in a heated single-pulsed shock tube at temperatures between 902 and 1200 K and pressures of 1.5-3.4 bar. Stable products from H atom addition and H abstraction have been identified and quantified by gas chromatography/flame ionization/mass spectrometry. The reaction for the H addition channel involving methyl displacement from propene has been determined relative to methyl displacement from 1,3,5-trimethylbenzene (135TMB), leading to a reaction rate, k(H + propene) → H(2)C═CH(2) + CH(3)) = 4.8 × 10(13) exp(-2081/T) cm(3)/(mol s). The rate constant for the abstraction of the allylic hydrogen atom is determined to be k(H + propene → CH(2)CH═CH(2) + H(2)) = 6.4 × 10(13) exp(-4168/T) cm(3)/(mol s). The reaction of H + propene has also been directly studied relative to the reaction of H + propyne, and the relationship is found to be log[k(H + propyne → acetylene + CH(3))/k(H + propene → ethylene + CH(3))] = (-0.461 ± 0.041)(1000/T) + (0.44 ± 0.04). The results showed that the rate constant for the methyl displacement reaction with propene is a factor of 1.05 ± 0.1 larger than that for propyne near 1000 K. The present results are compared with relevant earlier data on related compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号