首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs). In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice.  相似文献   

2.

Background  

Glutamate has been proposed as a transmitter in the peripheral taste system in addition to its well-documented role as an umami taste stimulus. Evidence for a role as a transmitter includes the presence of ionotropic glutamate receptors in nerve fibers and taste cells, as well as the expression of the glutamate transporter GLAST in Type I taste cells. However, the source and targets of glutamate in lingual tissue are unclear. In the present study, we used molecular, physiological and immunohistochemical methods to investigate the origin of glutamate as well as the targeted receptors in taste buds.  相似文献   

3.

Background

Numerous electrophysiological, ultrastructural, and immunocytochemical studies on rodent taste buds have been carried out on rat taste buds. In recent years, however, the mouse has become the species of choice for molecular and other studies on sensory transduction in taste buds. Do rat and mouse taste buds have the same cell types, sensory transduction markers and synaptic proteins? In the present study we have used antisera directed against PLCβ2, α-gustducin, serotonin (5-HT), PGP 9.5 and synaptobrevin-2 to determine the percentages of taste cells expressing these markers in taste buds in both rodent species. We also determined the numbers of taste cells in the taste buds as well as taste bud volume.

Results

There are significant differences (p < 0.05) between mouse and rat taste buds in the percentages of taste cells displaying immunoreactivity for all five markers. Rat taste buds display significantly more immunoreactivity than mice for PLCβ2 (31.8% vs 19.6%), α-gustducin (18% vs 14.6%), and synaptobrevin-2 (31.2% vs 26.3%). Mice, however, have more cells that display immunoreactivity to 5-HT (15.9% vs 13.7%) and PGP 9.5 (14.3% vs 9.4%). Mouse taste buds contain an average of 85.8 taste cells vs 68.4 taste cells in rat taste buds. The average volume of a mouse taste bud (42,000 μm3) is smaller than a rat taste bud (64,200 μm3). The numerical density of taste cells in mouse circumvallate taste buds (2.1 cells/1000 μm3) is significantly higher than that in the rat (1.2 cells/1000 μm3).

Conclusion

These results suggest that rats and mice differ significantly in the percentages of taste cells expressing signaling molecules. We speculate that these observed dissimilarities may reflect differences in their gustatory processing.
  相似文献   

4.

Background  

Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown.  相似文献   

5.

Background  

"Type II"/Receptor cells express G protein-coupled receptors (GPCRs) for sweet, umami (T1Rs and mGluRs) or bitter (T2Rs), as well as the proteins for downstream signalling cascades. Transduction downstream of T1Rs and T2Rs relies on G-protein and PLCβ2-mediated release of stored Ca2+. Whereas Gαgus (gustducin) couples to the T2R (bitter) receptors, which Gα-subunit couples to the sweet (T1R2 + T1R3) receptor is presently not known. We utilized RT-PCR, immunocytochemistry and single-cell gene expression profiling to examine the expression of the Gαq family (q, 11, 14) in mouse taste buds.  相似文献   

6.

Background  

Adrenal chromaffin cells mediate acute responses to stress through the release of epinephrine. Chromaffin cell function is regulated by several receptors, present both in adrenergic (AD) and noradrenergic (NA) cells. Extracellular ATP exerts excitatory and inhibitory actions on chromaffin cells via ionotropic (P2X) and metabotropic (P2Y) receptors. We have taken advantage of the actions of the purinergic agonists ATP and UTP on cytosolic free Ca2+ concentration ([Ca2+]i) to determine whether P2X and P2Y receptors might be asymmetrically distributed among AD and NA chromaffin cells.  相似文献   

7.

Background  

2-Methylthioadenosine 5'-triphosphate (2-MeSATP), formerly regarded as a specific P2Y (metabotropic) purinergic receptor agonist, stimulates Ca2+ influx and evokes catecholamine release from adrenal chromaffin cells. These cells express P2Y and P2X (ionotropic) purinoceptors, with the latter providing an important Ca2+ influx pathway. Using single cell calcium imaging techniques, we have determined whether 2-MeSATP might be a specific P2X receptor agonist in bovine chromaffin cells and assessed the relative role of P2X and P2Y receptors on catecholamine secretion from these cells.  相似文献   

8.
Fura-2 is one of the most used fluorophore for measuring intracellular calcium concentration ([Ca2+]i). In mouse bone marrow cell suspensions ATP produces a biphasic effect: till 1 mM, ATP produces increases in [Ca2+]i; from 1 mM on an increase is observed, that is followed by the decrease in the 340/380 nm ratio (R340/380). At high ATP (4 mM) concentration fura-2 leaked from loaded bone marrow cell suspensions. We observed that ATP decreases fluorescence in the absorption and excitation spectra of fura-2, consequently the emitted one is decreased including the isobestic point (360 nm). ATP analogs: BzATP, ATPyS and UTP, but not alphabetaATP, ADP or AMP, promote decrease of fluorescence in the isobestic point of fura-2. The physical/chemical process that reduces the absorption and excitation of fura-2 by ATP is unknown. The P2X7 inhibitors, Mg2+ (5 mM), OxATP (300 microM) and Brilliant Blue (100 nM), blocked the efflux of fura-2 and ATP-induced R340/380 decrease. The J774 cell line and mononuclear cells with a higher expression of P2X7 receptors show the same decrease in R340/380 as that induced by ATP. In the HL-60 cell line, myeloid cells and erythroblasts extracted from bone marrow, such effect does not occur. It is concluded that the use of the fluorescent Ca2+ indicator fura-2 does not allow the correct measurement of [Ca2+]i in these cells in the presence of a higher concentration of ATP which activated the P2X7 receptor.  相似文献   

9.

Background  

Taste receptor cells are responsible for transducing chemical stimuli into electrical signals that lead to the sense of taste. An important second messenger in taste transduction is IP3, which is involved in both bitter and sweet transduction pathways. Several components of the bitter transduction pathway have been identified, including the T2R/TRB taste receptors, phospholipase C β2, and the G protein subunits α-gustducin, β3, and γ13. However, the identity of the IP3 receptor subtype in this pathway is not known. In the present study we used immunocytochemistry on rodent taste tissue to identify the IP3 receptors expressed in taste cells and to examine taste bud expression patterns for IP3R3.  相似文献   

10.
11.
It is well established that prolonged electrical stimulation of brain tissue causes massive release of ATP in the extracellular space. The released ATP and the products of its hydrolysis, such as ADP and adenosine, become the main elements mediating chemotactic sensitivity and motility of microglial cells via subsequent activation of P2Y2,12 as well as A3A and A2A adenosine receptors. The size of the sheath around the electrode formed by the microglial cells is an important criterion for the optimization of the parameters of electrical current delivered to brain tissue. Here, we study a purinergic signaling pathway underlying the chemotactic motion of microglia towards the implanted electrode during deep brain stimulation. We present a computational model describing formation of a stable aggregate around the implantation site due to the joint chemo-attractive action of ATP and ADP together with a mixed influence of extracellular adenosine. The model was built in accordance with the classical Keller-Segel approach and includes an equation for the cells’ density as well as equations describing the hydrolysis of extracellular ATP via successive reaction steps ATP →ADP →AMP →adenosine. The results of our modeling allowed us to reveal the dependence of the width of the encapsulating layer around the electrode on the amount of ATP released due to permanent electrical stimulation. The dependences of the aggregates’ size on the parameter governing the nonlinearity of interaction between extracellular adenosine and adenosine receptors are also analyzed.  相似文献   

12.

Background  

Extracellular-signal regulated kinase (ERK1/2) is activated by nerve damage and its activation precedes survival and proliferation of Schwann cells. In contrast, activation of caspase 3, a cysteine protease, is considered as a marker for apoptosis in Schwann cells. In the present study, axonal outgrowth, activation of ERK1/2 by phosphorylation (p-ERK 1/2) and immunoreactivity of cleaved caspase 3 were examined after immediate, delayed, or no repair of transected rat sciatic nerves.  相似文献   

13.
Bin Li 《哲学杂志》2013,93(13):1582-1603
Reports of Type II twins are quite rare for most crystal structures. When they do occur, they are usually one of a number of possible twinning modes observed in a particular material. However, for the triclinic phase devitrite, Na2Ca3Si6O16, which nucleates from commercial soda?lime?silica float glass subjected to suitable heat treatments, the only reported twinning mode to date is a Type II twinning mode. In this study, this Type II twinning mode is first examined by molecular dynamics simulation to determine the lowest energy configuration of perfect twin boundaries for the twin mode. This is then compared with the lowest energy configurations of perfect twin boundaries found for six possible Type I twinning modes for devitrite for which the formal deformation twinning shear is less than 0.6. The most favourable twin plane configuration for the Type II twinning crystallography is shown to produce reasonably low twin boundary energies and sensible predictions for the optimum locations of the twin plane, K 1, and the [1?0?0] rotation axis, η 1, about which the 180° Type II twinning operation takes place. By comparison, all the Type I twinning modes were found to have very energetically unstable atomic configurations, and for each of these twinning modes, the lowest energy configurations found all led to high effective K 1 twin boundary energies relative to perfect crystal. These results therefore provide a rationale for the experimental observation of the particular Type II twinning mode seen in devitrite.  相似文献   

14.
ZnS overlayers were deposited on the CdS quantum dot (QD)-assembled TiO2 films, where the CdS QDs were grown on the TiO2 by repeated cycles of the in situ chemical bath deposition (CBD). With increasing the CdS CBD cycles, the CdS QD-assembled TiO2 films were transformed from the TiO2 film partially covered by small CdS QDs (Type I) to that fully covered by large CdS QDs (Type II). The ZnS overlayers significantly improved the overall energy conversion efficiency of both Types I and II. The ZnS overlayers can act as the intermediate layer and energy barrier at the interfaces. However, the dominant effects of the ZnS overlayers were different for the Types I and II. For Type I, ZnS overlayer dominantly acted as the intermediate layer between the exposed TiO2 surface and the electrolyte, leading to the suppressed recombination rate for the TiO2/electrolyte and the significantly enhanced charge-collection efficiency. On the contrary, for Type II, it dominantly acted as the efficient energy barrier at the interface between the CdS QDs and the electrolyte, leading to the hindered recombination rate from the large CdS QDs to the electrolyte and thus enhanced electron injection efficiency.  相似文献   

15.
Spectrographic and partly imaging observations of three Type II solar radio bursts displaying three drifting bands with frequencies related as 1¬2¬3 are discussed. The radio data of two of these events were simultaneousely recorded by the digital radiospectrograph of the Observatory of Solar Radioastronomy in Potsdam-Tremsdorf and the radioheliograph of the Paris-Meudon Observatory in Nançay. The data allow the brightness temperatures of radio emission in the three frequency bands to be determined. The second harmonic is traditionally explained as a result of coalescence of two plasma waves into an electromagnetic wave at twice the plasma frequency. Two nonlinear merging processes—the coalescence of three plasma waves, and of a plasma wave and an electromagnetic wave at twice the plasma frequency—are considered to explain the occurrence of the third harmonic on Type II dynamic spectra. The analysis shows that both processes can fit the observed brightness temperatures of the second and third harmonic. The first process acts preferably at low phase velocities of plasma waves and sharp electron density gradients in the source, and the second process dominates in the case of high plasma wave phase velocities. It is shown that the occurrence of the third harmonic in type II bursts due to nonlinear processes in the coronal plasma indicates not only a powerful event but also some specific conditions in the shock or foreshock region. Finally, we propose a method to distinguish between the two invoked nonlinear processes by a statistical investigation of Type II burst data.  相似文献   

16.
Pulsed, discretely tunable infrared difference frequency generation using CO and CO2 lasers was demonstrated in the chalcopyrite crystal CdGeAs2. The process of Type II phase-matched mixing was employed.  相似文献   

17.
Spectrographic and partly imaging observations of three Type II solar radio bursts displaying three drifting bands with frequencies related as 1?2?3 are discussed. The radio data of two of these events were simultaneousely recorded by the digital radiospectrograph of the Observatory of Solar Radioastronomy in Potsdam-Tremsdorf and the radioheliograph of the Paris-Meudon Observatory in Nan?ay. The data allow the brightness temperatures of radio emission in the three frequency bands to be determined. The second harmonic is traditionally explained as a result of coalescence of two plasma waves into an electromagnetic wave at twice the plasma frequency. Two nonlinear merging processes—the coalescence of three plasma waves, and of a plasma wave and an electromagnetic wave at twice the plasma frequency—are considered to explain the occurrence of the third harmonic on Type II dynamic spectra. The analysis shows that both processes can fit the observed brightness temperatures of the second and third harmonic. The first process acts preferably at low phase velocities of plasma waves and sharp electron density gradients in the source, and the second process dominates in the case of high plasma wave phase velocities. It is shown that the occurrence of the third harmonic in type II bursts due to nonlinear processes in the coronal plasma indicates not only a powerful event but also some specific conditions in the shock or foreshock region. Finally, we propose a method to distinguish between the two invoked nonlinear processes by a statistical investigation of Type II burst data. Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia; Astrophysical Institute, Potsdam, Germany; Paris-Meudon Observatory, France. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 41, No. 1, pp. 61–83, January, 1998.  相似文献   

18.
Fura-2 is widely used as a fluorescent probe to monitor dynamic changes in cytosolic free calcium in cells, where Ca2+ can enter through several types of voltage-operated or ligand-gated channels. However, Fura-2 is also sensitive to other metal ions, such as zinc, which may be involved in ionic channels and receptors. There is interest, in particular, in studying the synapses between mossy fibers and CA3 pyramidal cells which contain both calcium and high quantities of free or loosely bound zinc. We have found, through fluorescence probing, that endogenous zinc inhibits mossy fiber calcium transients. However, since these results might be explained by an effect of the zinc chelator N,N,N’,N’-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) on the spectral properties of Fura-2, we have carried out a validation of the method through fluorescence excitation spectra of the complex Fura-2/calcium, and show that TPEN does not affect these spectra. This supports the idea that the observed calcium enhancement is related to a zinc inhibition of presynaptic calcium mechanisms, and confirms the use of the chelator TPEN as a general procedure for the biophysical study of Ca(II) in the presence of Zn(II) using Fura-2.  相似文献   

19.
M M Joshi  R Gopal 《Pramana》1975,4(6):276-289
The extensive thermal emission spectrum attributed to the diatomic bromides of calcium, strontium and barium has been observed in the visible region at temperatures about 2200–2400° C, using a vacuum graphite furnace. Many new bands,viz., 141 in CaBr, 53 in SrBr and 68 in BaBr, have been recorded and classified. The vibrational constants agree with those determined by earlier workers and involved the ground state in each case. The transition C→X apears in each molecule and consists of two equally intense systems,viz., C1→X and C2→X. The general spectroscopic features of the C→X systems of the bromides of the II A sub group of the periodic table have been compared. They exhibit a close structural similarity and furnish a good example of homologous spectra. The system C→X in all these molecules arises from a C2 π−X2 Σ + transition where the2 π state appears to be intermediate between Hund’s cases (a) and (b).  相似文献   

20.
The existence of a peak effect in transport properties (a maximum of the critical current as function of magnetic field) is a well-known but still intriguing feature of Type II superconductors such as NbSe2 and Bi-2212. Using a model of pinning by surface irregularities in anisotropic superconductors, we have developed a calculation of the critical current which allows estimating quantitatively the critical current in both the high critical current phase and the low critical current phase. The only adjustable parameter of this model is the angle of the vortices at the surface. The agreement between the measurements and the model is really very impressive. In this framework, the anomalous dynamical properties close to the peak effect is due to coexistence of two different vortex states with different critical currents. Recent neutron diffraction data in NbSe2 crystals in the presence of transport current support this point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号