首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four Ib-type synthetic diamond crystals were studied by dynamic nuclear polarization (DNP)-enhanced high resolution solid state13C nuclear magnetic resonance (NMR) spectroscopy. The home built DNP magic-angle-spinning (MAS) NMR spectrometer operates at a field strength of 1.9 T and the highest DNP enhancement factor of synthetic diamonds came near to 103. Comparing with Ib-type natural diamonds, the13C NMR linewidths of synthetic diamonds in static spectra are broader. The13C spin-lattice relaxation time and DNP polarization time of synthetic diamond are shorter than those of Ib-type natural diamond. From the hyperfine structure of the DNP enhancement curve, four kinds of nitrogen-centred free radicals could be identified in synthetic diamond.  相似文献   

2.
13C Spin–lattice relaxation (SLR) times in the laboratory frame have been measured at room temperature as a function of field in the range of 500 to 5000 G on two natural type Ib and Ia diamonds after dynamic nuclear polarization. Each of the diamonds contains two types of fixed paramagnetic centers with overlapping inhomogeneous electron paramagnetic resonance (EPR) lines. EPR techniques have been employed to identify these defects and to determine their concentrations and relaxation times at X-band. Three different nuclear SLR paths, namely that due to electron SLR and two types of three spin processes, are discussed. The one three-spin process (TSP) (type 1) involves a simultaneous transition of two electron spins belonging to the same hyperfine EPR line and a 13C spin while the other process (type 2) involves two electron spins belonging to different hyperfine EPR lines and a 13C spin. It is shown that the thermal contact between the 13C nuclear Zeeman and electron dipole–dipole interaction reservoirs decreases with an increase in field intensity, thus forming a bottleneck in the 13C relaxation path due to the type 1 TSP. The contribution of TSP of type 1 dominates that due to electron SLR and the type 2 TSP in relaxing the 13C nuclei in type Ib diamond from about 1200 to 5000 G, while for type Ia diamond it dominates from 500 up to about 2200 G. In type Ia diamond over the range 2200 to 5000 G it seems that the type 2 TSP, which involves electrons of neighboring P2 hyperfine lines, dominates that of electron spin–lattice and the type 1 TSP. Over the range 500 to about 1200 G, a field-dependent electron SLR mechanism associated with N3 centers appears to dominate the 13C SLR.  相似文献   

3.
Pure organic polyalkylvinyl ether phases were synthesized by suspension polymerization using different ratios and compositions of n-butylvinyl ether (C4VE) and n-octadecylvinyl ether (C18VE) with triethylene glycol divinyl ether or divinylbenzene as crosslinkers, respectively. These phases were investigated by means of solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance (NMR) spectroscopy and 1H high-resolution magic angle spinning (HR MAS) NMR spectroscopy in suspended-state. A comparison of these two methods showed the substantial advantages of 1H HR MAS NMR measurements. Structure elucidation was achieved using a 2D H,H-COSY NMR experiment performed under MAS conditions enabling full peak assignment of the 1H NMR spectra of these phases. The dynamic behavior of the polyalkylvinyl ether phases was determined by employing temperature-dependent measurements of spin–lattice relaxation times (T1) as well as accumulation of a 2D wide line separation NMR spectrum.  相似文献   

4.
用红外吸收光谱、紫外吸收光谱、核磁共振(NMR)波谱(包含1H NMR、13C NMR、DEPT135、1H-1H COSY、1H-13C HMQC和1H-13C HMBC)、质谱、差示扫描量热分析、X-射线粉末衍射和元素分析等方法对卢立康唑进行了结构分析.对卢立康唑所有的1H和13C NMR信号进行了归属,并通过多种谱学技术确证了卢立康唑的结构.  相似文献   

5.
魏令  张善民 《波谱学杂志》2020,37(1):123-130
由静态探头线圈外有机材料产生的13C NMR背景信号强度大,化学位移范围广(δC 20~250),此背景信号在交叉极化实验中还可被增强,并随着样品信号的累积而累积,严重影响谱图分析.将相位步进脉冲引入交叉极化实验(称为PIPCP)中可以有效去除经交叉极化增强的13C NMR背景信号,但样品信号不受影响.这是由于经过相位步进脉冲后,线圈外相位严重畸变,而且线圈外锁定场强度急剧降低,来自探头材料的13C NMR背景信号无法有效地进行交叉极化.而对于被测样品甘氨酸来说,由于I核和S核之间强烈的偶极耦合作用,所加相位步进脉冲对锁定场强度的影响只有1.4%.  相似文献   

6.
本文研究了H-SAPO-34催化甲醇和丁醇转化反应及其产物分布的差异,结合气相色谱-质谱(GC-MS)联用、13C交叉极化魔角旋转核磁共振(13C CP MAS NMR)技术捕获了反应过程中生成的重要反应中间物种.甲醇转化过程以乙烯、丙烯和丁烯为主要产物;而丁醇转化过程中主要产物是丁醇脱水生成的丁烯,反应初期以丙烯和丁烯作为主要产物.两种醇类转化均以低碳烯烃作为主要产物,且存留物种和13C CP MAS NMR分析均观察到芳烃物种,说明H-SAPO-34催化甲醇和丁醇转化存留在催化剂上的有机物种相近.虽然起始于不同的醇类反应,但H-SAPO-34上限域空间的酸催化环境都能引导甲醇和丁醇制取低碳烯烃的反应过程.  相似文献   

7.
A solid complex of C60 with γ-cyclodextrin (γ-CyD) was examined with NMR spectroscopic methods in order to understand the dynamics of C60, and the interaction between C60 and γ-CyD. A 13C solid-state cross-polarization magic angle spinning (CP/MAS) NMR spectra shows C60 resonance at 142.6 ppm. This provides the evidence of interaction between 13C spins in C60 and 1H spins in the γ-CyD host. Ambient temperature experiments on the 13C CP/MAS NMR, with varying contact time, shows that the water associated with γ-CyDs plays an important role in the nuclear relaxation processes. The dynamics of C60 in γ-CyD was investigated using temperature and field-dependent 13C spin-lattice relaxation time measurements. The influence of water on the dynamics of C60 was less significant below 250 K.  相似文献   

8.
Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth’s field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth’s magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring 14N nucleus via the hyperfine interaction. A high-quality 2D 19F–1H COSY spectrum acquired in the Earth’s magnetic field with DNP enhancement is presented and compared to simulation.  相似文献   

9.
利用核磁共振氢谱(1H NMR)、碳谱(13C NMR)、同核位移相关谱(1H-1H COSY)、异核单量子相干谱(HSQC)和异核多键相关谱(HMBC)等多种核磁研究方法对抗银屑病药物卡泊三醇的1H、13C信号进行完全归属.  相似文献   

10.
This article provides an overview of polarizing mechanisms involved in high-frequency dynamic nuclear polarization (DNP) of frozen biological samples at temperatures maintained using liquid nitrogen, compatible with contemporary magic-angle spinning (MAS) nuclear magnetic resonance (NMR). Typical DNP experiments require unpaired electrons that are usually exogenous in samples via paramagnetic doping with polarizing agents. Thus, the resulting nuclear polarization mechanism depends on the electron and nuclear spin interactions induced by the paramagnetic species. The Overhauser Effect (OE) DNP, which relies on time-dependent spin–spin interactions, is excluded from our discussion due the lack of conducting electrons in frozen aqueous solutions containing biological entities. DNP of particular interest to us relies primarily on time-independent, spin-spin interactions for significant electron–nucleus polarization transfer through mechanisms such as the Solid Effect (SE), the Cross Effect (CE) or Thermal Mixing (TM), involving one, two or multiple electron spins, respectively. Derived from monomeric radicals initially used in high-field DNP experiments, bi- or multiple-radical polarizing agents facilitate CE/TM to generate significant NMR signal enhancements in dielectric solids at low temperatures (<100 K). For example, large DNP enhancements (∼300 times at 5 T) from a biologically compatible biradical, 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL), have enabled high-resolution MAS NMR in sample systems existing in submicron domains or embedded in larger biomolecular complexes. The scope of this review is focused on recently developed DNP polarizing agents for high-field applications and leads up to future developments per the CE DNP mechanism. Because DNP experiments are feasible with a solid-state microwave source when performed at <20 K, nuclear polarization using lower microwave power (<100 mW) is possible by forcing a high proportion of biradicals to fulfill the frequency matching condition of CE (two EPR frequencies separated by the NMR frequency) using the strategies involving hetero-radical moieties and/or molecular alignment. In addition, the combination of an excited triplet and a stable radical might provide alternative DNP mechanisms without the microwave requirement.  相似文献   

11.
本文采用元素分析、紫外吸收光谱、红外吸收光谱、质谱和核磁共振(NMR)波谱(包含1H NMR、13C NMR、DEPT、1H-1H COSY、1H-13C HSQC和1H-13C HMBC)等方法对德拉沙星葡甲胺进行了结构分析,确证了德拉沙星葡甲胺的结构,分析了其IR谱图特征吸收峰对应的基团,对其1H和13C NMR信号进行了完整归属.并通过差示扫描量热法、热重分析及粉末X-射线衍射分析对德拉沙星葡甲胺的晶型进行了初步研究.  相似文献   

12.
李春发  刘广  王芹  刘征 《波谱学杂志》2018,35(3):363-373
通过多种核磁共振(NMR)技术(包括1H NMR、定量13C NMR、DEPT135、1H-1H COSY、1H-1H NOESY、1H-13C HSQC和1H-13C HMBC)技术,对季戊四醇硬脂酸酯润滑剂的组成进行了表征.结果表明:该润滑剂主要成分是单季戊四醇四硬脂酸酯,同时还含有少量的单季戊四醇三硬脂酸酯、单季戊四醇双硬脂酸酯、双季戊四醇硬脂酸酯和三季戊四醇硬脂酸酯,以及微量的多季戊四醇硬脂酸酯.  相似文献   

13.
Three chemical vapor deposited diamond films were studied by dynamic nuclear polarization (DNP)-enhanced high-resolution solid-state13C nuclear magnetic resonance (NMR) spectroscopy. Enhanced13C direct-polarization spectra of diamond films were obtained by irradiating the samples with microwaves at or near electron spin resonance Larmor frequency of carbon center free radicals. No NMR signal for sp2 hybridized carbons could be observed. From the curve of the DNP enhancement as a function of frequency, it is found that the dominant DNP mechanism is the solid-state effect. The13C cross-polarization spectrum, which is an evidence for existence of the proton defect in the lattice of diamond films, is much broader than the13C single pulse spectrum. The reason is discussed shortly.  相似文献   

14.
盐酸贝西沙星是一种新型的氟喹诺酮类抗菌药物,对盐酸贝西沙星的紫外吸收光谱(UV)、红外吸收光谱(IR)、质谱(MS)、核磁共振(NMR)波谱(包括1H NMR、13C NMR、DEPT、HSQC、HMBC、COSY和NOESY)数据进行了解析,对其所有的1H和13C NMR信号进行了归属,通过多种波谱学技术确证了盐酸贝西沙星的结构.  相似文献   

15.
刘季红  靳焜  王平  罗根 《波谱学杂志》2019,36(3):341-349
七叶亭衍生物含有药效性较高的苯二酚基团,具有各种生物活性.本文以七叶亭(化合物1)为母体,通过将苯基引入到4位、将甲氧基与羟基分别引入到5、6、7和8位,得到一系列七叶亭衍生物2~14.首先以七叶亭为例,以DMSO-d6作为溶剂,采集了它的多种核磁共振(NMR)谱图(包括1H NMR、13C NMR、1H-13C HSQC、1H-13C HMBC),并进行了较详细的化学位移归属;然后对七叶亭衍生物2~141H和13C NMR进行了全归属;另外,讨论了取代基变化对七叶亭及其衍生物上的1H和13C NMR化学位移的影响;最后,使用GIAO和CSGT两种量子化学计算方法计算了七叶亭及其衍生物上的1H和13C NMR化学位移,并与它们的实测值做了比较.  相似文献   

16.
丁氟螨酯是一种新型杀螨剂,具有高效、低残留的特点.本文对其红外吸收光谱(IR)、紫外吸收光谱(UV)、质谱(MS)及核磁共振(NMR)波谱(包括1H NMR、13C NMR、DEPT、1H-1H COSY、1H-13C HSQC、1H-13C HMBC)进行了测定,分析了其UV和IR谱图特征吸收峰对应的基团,并对其1H和13C NMR信号进行了归属,确证了丁氟螨酯的结构.该研究将为丁氟螨酯的其他相关研究提供参考.  相似文献   

17.
We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B(1S)) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4mm diameter sapphire rotor containing the sample. The predicted average B(1S) field is 13μT/W(1/2), where S denotes the electron spin. For a routinely achievable input power of 5W the corresponding value is γ(S)B(1S)=0.84MHz. The calculations provide insights into the coupling of the microwave power to the sample, including reflections from the RF coil and diffraction of the power transmitted through the coil. The variation of enhancement with rotor wall thickness was also successfully simulated. A second, simplified calculation was performed using a single pass model based on Gaussian beam propagation and Fresnel diffraction. This model provided additional physical insight and was in good agreement with the full HFSS simulation. These calculations indicate approaches to increasing the coupling of the microwave power to the sample, including the use of a converging lens and fine adjustment of the spacing of the windings of the RF coil. The present results should prove useful in optimizing the coupling of microwave power to the sample in future DNP experiments. Finally, the results of the simulation were used to predict the cross effect DNP enhancement (?) vs. ω(1S)/(2π) for a sample of (13)C-urea dissolved in a 60:40 glycerol/water mixture containing the polarizing agent TOTAPOL; very good agreement was obtained between theory and experiment.  相似文献   

18.
Prudent analysis of the solid state 13C MAS NMR spectra of polycrystalline K2Pt(CN)4 · 3H2O (KTCP) reveals that in crystals of this compound there are two types of carbon nuclei with slightly different 13C chemical shift tensors, contrary to what is found for the solution NMR spectrum and previous static powder NMR studies on this compound and the high resolution solid state NMR studies on other similar compounds. The 13C MAS spectra measured at different rotor spinning speeds are satisfactorily simulated though the use of a newly developed computer program based on a novel density matrix formulation. The present method is eminently successful even though the spectra are rather complicated because of (1) the relatively large anisotropies of the chemical shift tensors; (2) the high-order dipolar interactions between 13C and 14N nuclei because of the strong quadrupolar coupling constants of 14N nuclei; and (3) the indirect J-coupling between the 13C and 195Pt. The principal elements as well as their orientations of the two 13C chemical shift tensors are evaluated from the spectral simulations.  相似文献   

19.
A proton dynamic nuclear polarization (DNP) NMR signal enhancement (epsilon) close to thermal equilibrium, epsilon = 0.89, has been obtained at high field (B(0) = 5 T, nu(epr) = 139.5 GHz) using 15 mM trityl radical in a 40:60 water/glycerol frozen solution at 11 K. The electron-nuclear polarization transfer is performed in the nuclear rotating frame with microwave irradiation during a nuclear spin-lock pulse. The growth of the signal enhancement is governed by the rotating frame nuclear spin-lattice relaxation time (T(1rho)), which is four orders of magnitude shorter than the nuclear spin-lattice relaxation time (T(1n)). Due to the rapid polarization transfer in the nuclear rotating frame the experiment can be recycled at a rate of 1/T(1rho) and is not limited by the much slower lab frame nuclear spin-lattice relaxation rate (1/T(1n)). The increased repetition rate allowed in the nuclear rotating frame provides an effective enhancement per unit time(1/2) of epsilon(t) = 197. The nuclear rotating frame-DNP experiment does not require high microwave power; significant signal enhancements were obtained with a low-power (20 mW) Gunn diode microwave source and no microwave resonant structure. The symmetric trityl radical used as the polarization source is water-soluble and has a narrow EPR linewidth of 10 G at 139.5 GHz making it an ideal polarization source for high-field DNP/NMR studies of biological systems.  相似文献   

20.
本文利用多种液体核磁共振(NMR)技术,综合分析了在三个不同反应条件下蒽催化加氢反应获得的产物混合物.利用二维扩散排序谱(DOSY)和一维选择性激发谱(selTOCSY)确定了产物中含有的二氢蒽、四氢蒽、对称八氢蒽和非对称八氢蒽;利用1H NMR、13C NMR、DEPT135、1H-1H COSY、1H-13C HSQC实验对二氢蒽、四氢蒽和对称八氢蒽的1H和13C NMR信号进行了详细归属;利用定量核磁共振氢谱(QNMR)计算得到了蒽的转化率和产物的选择性.本研究可用于指导优化催化反应条件,提高产物对称八氢蒽的选择性,同时为稠环类芳烃催化加氢产物的分析提供系统的NMR技术方案.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号