首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electronic spectra of ruthenium(II) nitrosyl complexes [Ru(NO)(salen)(X)]4n (X = Cl, H2O; n = 0, 1) and [Ru(NO)(P)(ONO)] with tetradentate -conjugated ligands N,N'-ethylenebis(salicylideniminato) dianion (salen) and porphinate dianion (P) were calculated by the TD DFT and CINDO/CI methods. The data obtained were compared to the results of previous calculations of the spectra of trans-[Ru(NO)(NH3)4(L)]3 + complexes with nitrogen-containing heterocyclic ligands L. It was found that charge-transfer transitions to * orbitals of the RuNO group dominate in the long-wave part of the spectrum irrespective of the other ligands.  相似文献   

2.
Geometrical structures of nitroso complexes trans- [Ru(NO)(NH3)4(Cl)]2+, trans-[Ru(NO)(NH3)4(H2O)]3+, [Ru(NO)(Cyclam)(Cl)]2+(Cyclam is 1,4,8,11-tetraazocyclodecane), and [Ru(NO)(Bipy)2(Cl)]2+ (Bipy is 2,2-bipyridine) are optimized using the density functional method. The potential energy surface of all four complexes was found to contain local minima corresponding to a stable state with the 1-coordination of NO through the N atom and to two metastable isomers with the 1-O and 2-NO coordination. For [Ru(NO)Cl5)]2-, trans-[Ru(NO)(NH3)4(Cl)]2+, and trans-[Ru(NO)(NH3)4(H2O)]3+, the lowest electronically excited triplet states are calculated, as well as the reduced complexes with one additional electron. It is shown that the electron excitation and reduction are accompanied by bending of the RuNO group with a substantial elongation of the Ru-O and N-O bonds, which makes this group unstable. These processes do not cause any significant changes in the metal or in the nitroso ligand oxidation states because of the electron density delocalization in the RuNO group.Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 1, 2005, pp. 32–42.Original Russian Text Copyright © 2005 by Sizova, Lubimova.  相似文献   

3.
Geometry optimization for the ground state and metastable isomers of the nitrosyl complexes trans-[Ru(NO)(NH3)4(L)]3 + (L = imidazole, pyridine, pyrazine, nicotinamide), [Ru(NO)(CN)5]2 -, and [Ru(NO)Cl5]2 - was performed in terms of the density functional theory (SVWN/LanL2DZ + 6-31G). The energy gap between the stable structure and the isomer with linear coordination of NO via the oxygen atom is practically independent of the nature of ligand L in the series of ammonia complexes with the same charge, and the energy gap between the stable structure and the isomer with side 2 coordination of NO gets slightly smaller if ligand L possesses -acceptor properties.  相似文献   

4.
Works CF  Jocher CJ  Bart GD  Bu X  Ford PC 《Inorganic chemistry》2002,41(14):3728-3739
Described are syntheses, characterizations, and photochemical reactions of the nitrosyl complexes Ru(salen)(ONO)(NO) (I, salen = N,N'-ethylenebis(salicylideneiminato) dianion), Ru(salen)(Cl)(NO) (II), Ru((t)Bu(4)salen)(Cl)(NO) (III,(t)Bu(4)salen = N,N'-ethylenebis(3,5-di-tert-butylsalicylideneiminato) dianion), Ru((t)Bu(4)salen)(ONO)(NO) (IV), Ru((t)Bu(2)salophen)(Cl)(NO) (V, (t)Bu(2)salophen = N,N'-1,2-phenylenediaminebis(3-tert-butylsalicylideneiminato) dianion), and Ru((t)Bu(4)salophen)(Cl)(NO) (VI, (t)Bu(4)salophen = N,N'-1,2-phenylenebis(3,5-di-tert-butylsalicylideneiminato) dianion). Upon photolysis, these Ru(L)(X)(NO) compounds undergo NO dissociation to give the ruthenium(III) solvento products Ru(L)(X)(Sol). Quantum yields for 365 nm irradiation in acetonitrile solution fall in a fairly narrow range (0.055-0.13) but decreased at longer lambda(irr). The quantum yield (lambda(irr) = 365 nm) for NO release from the water soluble complex [Ru(salen)(H(2)O)(NO)]Cl (VII) was 0.005 in water. Kinetics of thermal back-reactions to re-form the nitrosyl complexes demonstrated strong solvent dependence with second-order rate constants k(NO) varying from 5 x 10(-4) M(-1) s(-1) for the re-formation of II in acetonitrile to 5 x 10(8) M(-1) s(-1) for re-formation of III in cyclohexane. Pressure and temperature effects on the back-reaction rates were also examined. These results are relevant to possible applications of photochemistry for nitric oxide delivery to biological targets, to the mechanisms by which NO reacts with metal centers to form metal-nitrosyl bonds, and to the role of photochemistry in activating similar compounds as catalysts for several organic transformations. Also described are the X-ray crystal structures of I and V.  相似文献   

5.
The preparation of the nucleophile trans-[RuCl(NO)( 1 )], where 1 is the bidentate ligand Ph2PCH2C18CH2PPh2, and of the five-coordinate species [RuCl(CO)(NO)( 1 )], [RuCl(CO)(NO)(Ph2PCH2Ph)2] and [RuCl(NO)( 2 )( 1 )] are reported. The crystal structure of [RuCl(CO)(NO)( 1 )] shows that the coordination around the metal atom is distorted trigonal bipyramidal with the phosphorus atoms in axial positions. The Ru? N? O bond angle is 142.8°. 1H- and 31P-NMR. and \documentclass{article}\pagestyle{empty}\begin{document}$ \tilde \nu $\end{document}NO IR.-data for the above complexes are reported and related to the coordination geometry.  相似文献   

6.
Reaction of [Ru (VI)(N)(L (1))(MeOH)] (+) (L (1) = N, N'-bis(salicylidene)- o-cyclohexylenediamine dianion) with excess pyridine in CH 3CN produces [Ru (III)(L (1))(py) 2] (+) and N 2. The proposed mechanism involves initial equilibrium formation of [Ru (VI)(N)(L (1))(py)] (+), which undergoes rapid N...N coupling to produce [(py)(L (1))Ru (III) N N-Ru (III)(L (1))(py)] (2+); this is followed by pyridine substituion to give the final product. This ligand-induced N...N coupling of Ru (VI)N is utilized in the preparation of a series of new ruthenium(III) salen complexes, [Ru (III)(L)(X) 2] (+/-) (L = salen ligand; X = H 2O, 1-MeIm, py, Me 2SO, PhNH 2, ( t )BuNH 2, Cl (-) or CN (-)). The structures of [Ru (III)(L (1))(NH 2Ph) 2](PF 6) ( 6), K[Ru (III)(L (1))(CN) 2] ( 9), [Ru (III)(L (2))(NCCH 3) 2][Au (I)(CN) 2] ( 11) (L (2) = N, N'-bis(salicylidene)- o-phenylenediamine dianion) and [N ( n )Bu 4][Ru (III)(L (3))Cl 2] ( 12) (L (3) = N, N'-bis(salicylidene)ethylenediamine dianion) have been determined by X-ray crystallography.  相似文献   

7.
A procedure for the synthesis of trans-Ru(NO)(Py)2Cl2(OH) (I) from K2[Ru(NO)Cl5] was proposed. Treatment of hydroxo complex I with HCl or H2SO4 at room temperature gave the corresponding salts trans-[Ru(NO)(Py)2Cl2(H2O)]Cl · 2H2O (II) and trans-[Ru(NO)(Py)2Cl2(H2O)]HSO4 (III). All the complexes obtained were characterized by 1H and 13C NMR and IR spectroscopy and elemental analysis; their structures were determined by X-ray diffraction. The structures are stabilized by π-stacking between the pyridine ligands of adjacent complex species.  相似文献   

8.
The geometric structures of the ground state and metastable isomers of the nitroso complexes trans-[RuCl4(NO)L]q (L = H2O, NH3, pyrazine (Pz), q = −1; Cl, OH, CN, NO 2 , q = −2) and cis[RuCl4(NO)L]q (L = Pz, q = −1) were optimized in terms of the density functional theory. The variation of the trans-ligand L influences the relative energy of the metastable isomer with a side NO coordination. The presence of π-acceptor substituents in the trans-ligand L decreases the energy.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 8, 2005, pp. 606–611.Original Russian Text Copyright © 2005 by Lyubimova, Sizova.  相似文献   

9.
A procedure for the synthesis of mpa h c-[Ru(NO)(NH3)4(OH)]Cl2 in a nearly quantitative yield (~95%) comprising treatment of a solution of (NH4)2[Ru(NO)Cl5] with ammonium carbonate at t ~80°C was developed. It was found that [Ru(NO)(NH3)4(H2O)]Cl3·H2O and trans-[Ru(NO)(NH3)4Cl]Cl2 formed in the reaction of [Ru(NO)(NH3)4(OH)]Cl2 with hydrochloric acid at various temperatures most often contain some initial hydroxy complex. The former compound is unstable, even at room temperature, it slowly eliminates water and HCl. A procedure for preparing the latter compound in a pure state in 85–90% yield was proposed. The acidity constant of the complex trans-[Ru(NO)(NH3)4(H2O)]3+ at room temperature (K a = (4 ± 1) × 10?2) was estimated by 14N NMR spectroscopy.  相似文献   

10.
IR-spectra of stable and metastable isomers of ruthenium nitrosocomplexes, [Ru(NO)Cl5]2? and [Ru(NO)(CN)5]2?, have been calculated within the frames of density functional theory. Frequency assignment was refined on the base of analysis of normal vibration in internal vibrational coordinates. Calculation results confirm that spectrally observed metastable states are bond isomers with ν1-ON and ν2-NO coordination.  相似文献   

11.
Two isomers of heteroleptic bis(bidentate) ruthenium(II) complexes with dimethyl sulfoxide (dmso) and chloride ligands, trans(Cl,Nbpy)- and trans(Cl,NHdpa)-[Ru(bpy)Cl(dmso-S)(Hdpa)]+ (bpy: 2,2′-bipyridine; Hdpa: di-2-pyridylamine), are synthesized. This is the first report on the selective synthesis of a pair of isomers of cis-[Ru(L)(L′)XY]n+ (L≠L′: bidentate ligands; X≠Y: monodentate ligands). The structures of the ruthenium(II) complexes are clarified by means of X-ray crystallography, and the signals in the 1H NMR spectra are assigned based on 1H–1H COSY spectra. The colors of the two isomers are clearly different in both the solid state and solution: the trans(Cl,Nbpy) isomer has a deep red color, whereas the trans(Cl,NHdpa) isomer is yellow. Although both complexes have intense absorption bands at λ≈440–450 nm, only the trans(Cl,Nbpy) isomer has a shoulder band at λ≈550 nm. DFT calculations indicate that the LUMOs of both isomers are the π* orbitals in the bpy ligand, and that the LUMO level of the trans(Cl,Nbpy) isomer is lower than that of the trans(Cl,NHdpa) isomer due to the trans effect of the Cl ligand; thus resulting in the appearance of the shoulder band. The HOMO levels are almost the same in both isomers. The energy levels are experimentally supported by cyclic voltammograms, in which these isomers have different reduction potentials and similar oxidation potentials.  相似文献   

12.
The electronic absorption spectra of ruthenium nitrosyl complexes with nitrogen-containing heterocyclic ligands were analyzed on the basis of ab initio and CINDO/CI semiempirical calculations of free ligands L and complexes trans-[Ru(NO)(NH3)4(L)]3 + (L = pyridine, pyrazine, nicotinamide, isonicotinamide, l-histidine, imidazole). Spectral manifestations of a strong covalent Ru-NO bond were observed to conclude that the oxidation states of Ru and NO in the RuNO3 + group are expedient to represent as Ru(III) and NO0. Introduction of a nitrosyl group into the inner coordination sphere of Ru(II) complexes with nitrogen-containing heterocyclic ligands much affects the entire spectral patterns and denudes these ligands of the capacity to exhibit chromophoric properties.  相似文献   

13.
The photochemical, photophysical and photobiological studies of a mixture containing cis-[Ru(H-dcbpy)2(Cl)(NO)] (H2-dcbpy = 4,4′-dicarboxy-2,2′-bipyridine) and Na4[Tb(TsPc)(acac)] (TsPc = tetrasulfonated phthalocyanines; acac = acetylacetone), a system capable of improving photodynamic therapy (PDT), were accomplished. cis-[Ru(H-dcbpy)2(Cl)(NO)] was obtained from cis-[Ru(H2-dcbpy)2Cl2]·2H2O, whereas Na4[Tb(TsPc)(acac)] was obtained by reacting phthalocyanine with terbium acetylacetonate. The UV–Vis spectrum of cis-[Ru(H-dcbpy)2(Cl)(NO)] displays a band in the region of 305 nm (λmax in 0.1 mol L−1 HCl)(π–π*) and a shoulder at 323 nm (MLCT), while the UV–Vis spectrum of Na4[Tb(TsPc)(acac)] presents the typical phthalocyanine bands at 342 nm (Soret λmax in H2O) and 642, 682 (Q bands). The cis-[Ru(H-dcbpy)2(Cl)(NO)] FTIR spectrum displays a band at 1932 cm−1 (Ru–NO+). The cyclic voltammogram of the cis-[Ru(H-dcbpy)2(Cl)(NO)] complex in aqueous solution presented peaks at E = 0.10 V (NO+/0) and E = −0.50 V (NO0/−) versus Ag/AgCl. The NO concentration and 1O2 quantum yield for light irradiation in the λ > 550 nm region were measured as [NO] = 1.21 ± 0.14 μmol L−1 and øOS = 0.41, respectively. The amount of released NO seems to be dependent on oxygen concentration, once the NO concentration measured in aerated condition was 1.51 ± 0.11 μmol L−1 The photochemical pathway of the cis-[Ru(H-dcbpy)2(Cl)(NO)]/Na4[Tb(TsPc)(acac)] mixture could be attributed to a photoinduced electron transfer process. The cytotoxic assays of cis-[Ru(H-dcbpy-)2(Cl)(NO)] and of the mixture carried out with B16F10 cells show a decrease in cell viability to 80% in the dark and to 20% under light irradiation. Our results document that the simultaneous production of NO and 1O2 could improve PDT and be useful in cancer treatment.  相似文献   

14.
In mononitrosyl complexes of transition metals two long-lived metastable states corresponding to linkage isomers of the nitrosyl ligand can be induced by irradiation with appropriate wavelengths. Upon irradiation, the N-bound nitrosyl ligand (ground state, GS) turns into two different conformations: isonitrosyl O bound for the metastable state 1 (MS1) and a side-on nitrosyl conformation for the metastable state 2 (MS2). Structural and spectroscopic investigations on [RuCl(NO)py(4)](PF(6))(2)·1/2H(2)O (py = pyridine) reveal a nearly 100% conversion from GS to MS1. In order to identify the factors which lead to this outstanding photochromic response we study in this work the influence of counteranions, trans ligands to the NO and equatorial ligands on the conversion efficiency: [RuX(NO)py(4)]Y(2)·nH(2)O (X = Cl and Y = PF(6)(-) (1), BF(4)(-) (2), Br(-)(3), Cl(-) (4); X = Br and Y = PF(6)(-) (5), BF(4)(-) (6), Br(-)(7)) and [RuCl(NO)bpy(2)](PF(6))(2) (8), [RuCl(2)(NO)tpy](PF(6)) (9), and [Ru(H(2)O)(NO)bpy(2)](PF(6))(3) (10) (bpy = 2,2'-bipyridine; tpy = 2,2':6',2"-terpyridine). Structural and infrared spectroscopic investigations show that the shorter the distance between the counterion and the NO ligand the higher the population of the photoinduced metastable linkage isomers. DFT calculations have been performed to confirm the influence of the counterions. Additionally, we found that the lower the donating character of the ligand trans to NO the higher the photoconversion yield.  相似文献   

15.
Summary The kinetics of the reaction between H2O2 and some Schiff base complexes of MnIII have been investigated in both aqueous and micellar sodium dodecyl sulphate (SDS) solution. The reaction rate is first order in both H2O2 and [complex], and inversely proportional to [H+]. The second-order rate constant increases in the sequence [Mn(salophen)(OAc)] > [Mn(salen)(OH2)]-ClO4 > [Mn(salen)(OAc)]H2O, where salen = N,N-bis-(salicylidene)ethylenediamine and salophen = N,N-bis-(salicylidene)-o-phenylenediamine. At SDS concentrations below the critical micellar concentration, there is almost no effect on the rate of reaction whereas at higher concentrations the reaction rate increases slightly. A mechanism involving MnII and a peroxo intermediate is proposed.  相似文献   

16.
Reaction of [Ru(trpy)Cl3] with quinolin-8-ol (HQ) yields [Ru(trpy)(Q)Cl]. Treatment of [Ru(trpy)(Q)Cl] with Ag+ in Me2CO–H2O (3:1) and MeCN gives [Ru(trpy)- (Q)(H2O)]+ and [Ru(trpy)(Q)(MeCN)]+, respectively, which were isolated as their perchlorate salts. A similar reaction in EtOH, in the presence of NaN3, yields [Ru(trpy)(Q)(N3)]. All complexes are diamagnetic (low-spin, d6, S = 0) and show many intense m.l.c.t. transitions in the visible region. They display a reversible RuII-RuIII oxidation in the -0.13-0.48 V versus s.c.e. range, followed by an irreversible RuIII-RuIV oxidation in the 0.46–1.08V versus s.c.e. range and three trpy-based reductions on the negative side of s.c.e. Chemical oxidation of [RuII(trpy)(Q)Cl] by Ce4+ gives [Ru(trpy)-(Q)Cl]+ which shows intense l.m.c.t. transitions in the visible region together with a weak ligand field transition in the lower energy region. The complex is one-electron paramagnetic (low-spin, d5, S=1/2) and shows a rhombic e.s.r. spectrum in MeCN–PhMe (1:1) solution at 77K. Chemical oxidation of [Ru(trpy)(Q)-(H2O)]+ results in the formation of a -oxo dimer, [{Ru(trpy)(Q)}2O]2+.  相似文献   

17.
According to the data of 1H NMR spectroscopy, trans-hydroxochloro complexes containing from two to four pyridine molecules in the internal sphere are formed on the heating of a dilute aqueous solution of K2[Ru(NO)Cl5] with pyridine. The evaporation of the reaction solution with concentrated hydrochloric acid gives fac-[Ru(NO)(Py)2Cl3] (I) in a yield of ~90%. The structures of two crystalline modifications of this complex are determined by X-ray diffraction analysis (CIF files ССDС nos. 1452208 (Ia) and 1452207 (Ib)). IR spectroscopy shows that the irradiation of complex I (λ ~ 450 nm, T = 80 K) results in photoisomerization with the formation of the metastable state MS1 in which the nitroso group is coordinated by the oxygen atom. The activation parameters of the photoisomerization are determined from the data of differential scanning calorimetry (DSC). Compound trans-[Ru(NO)Py4(OH)]Cl2 ? H2O is isolated in a yield of ~70% on reflux of complex I with a pyridine excess in an aqueous solution, and the presence of molecules of water of crystallization in this compound is confirmed by thermal gravimetry (TG) and IR spectroscopy.  相似文献   

18.
Hirano T  Oi T  Nagao H  Morokuma K 《Inorganic chemistry》2003,42(20):6575-6583
cis-[Ru(NO)Cl(pyca)(2)] (pyca = 2-pyridinecarboxylato), in which the two pyridyl nitrogen atoms of the two pyca ligands coordinate at the trans position to each other and the two carboxylic oxygen atoms at the trans position to the nitrosyl ligand and the chloro ligand, respectively (type I shown as in Chart 1), reacted with NaOCH(3) to generate cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I). The geometry of this complex was confirmed to be the same as the starting complex by X-ray crystallography: C(13.5)H(13)N(3)O(6.5)Ru; monoclinic, P2(1)/n; a = 8.120(1), b = 16.650(1), c = 11.510(1) A; beta = 99.07(1) degrees; V = 1536.7(2) A(3); Z = 4. The cis-trans geometrical change reaction occurred in the reactions of cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I) in water and alcohol (ROH, R = CH(3), C(2)H(5)) to form [[trans-Ru(NO)(pyca)(2)](2)(H(3)O(2))](+) (type V) and trans-[Ru(NO)(OR)(pyca)(2)] (type V). The reactions of the trans-form complexes, trans-[Ru(NO)(H(2)O)(pyca)(2)](+) (type V) and trans-[Ru(NO)(OCH(3))(pyca)(2)] (type V), with Cl(-) in hydrochloric acid solution afforded the cis-form complex, cis-[Ru(NO)Cl(pyca)(2)] (type I). The favorable geometry of [Ru(NO)X(pyca)(2)](n)(+) depended on the nature of the coexisting ligand X. This conclusion was confirmed by theoretical, synthetic, and structural studies. The mono-pyca-containing nitrosylruthenium complex (C(2)H(5))(4)N[Ru(NO)Cl(3)(pyca)] was synthesized by the reaction of [Ru(NO)Cl(5)](2)(-) with Hpyca and characterized by X-ray structural analysis: C(14)H(24)N(3)O(3)Cl(3)Ru; triclinic, Ponemacr;, a = 7.631(1), b = 9.669(1), c = 13.627(1) A; alpha = 83.05(2), beta = 82.23(1), gamma = 81.94(1) degrees; V = 981.1(1) A(3); Z = 2. The type II complex of cis-[Ru(NO)Cl(pyca)(2)] was synthesized by the reaction of [Ru(NO)Cl(3)(pyca)](-) or [Ru(NO)Cl(5)](2)(-) with Hpyca and isolated by column chromatography. The structure was determined by X-ray structural analysis: C(12)H(8)N(3)O(5)ClRu; monoclinic, P2(1)/n; a = 10.010(1), b = 13.280(1), c = 11.335(1) A; beta = 113.45(1) degrees; V = 1382.4(2) A(3); Z = 4.  相似文献   

19.
[Ru(IV)(2,6-Cl2tpp)Cl2], prepared in 90 % yield from the reaction of [Ru(VI)(2,6-Cl2tpp)O2] with Me3SiCl and structurally characterized by X-ray crystallography, is markedly superior to [Ru(IV)(tmp)Cl2], [Ru(IV)(ttp)Cl2], and [Ru(II)(por)(CO)] (por=2,6-Cl2tpp, F20-tpp, F28-tpp) as a catalyst for alkene epoxidation with 2,6-Cl2pyNO (2,6-Cl2tpp=meso-tetrakis(2,6-dichlorophenyl)porphyrinato dianion; tmp=meso-tetramesitylporphyrinato dianion; ttp=meso-tetrakis(p-tolyl)porphyrinato dianion; F20-tpp=meso-tetrakis(pentafluorophenyl)porphyrinato dianion; F28-tpp=2,3,7,8,12,13,17,18-octafluoro-5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato dianion). The "[Ru(IV)(2,6-Cl2tpp)Cl2]+2,6-Cl2pyNO" protocol oxidized, under acid-free conditions, a wide variety of hydrocarbons including 1) cycloalkenes, conjugated enynes, electron-deficient alkenes (to afford epoxides), 2) arenes (to afford quinones), and 3) Delta5-unsaturated steroids, Delta4-3-ketosteroids, and estratetraene derivatives (to afford epoxide/ketone derivatives of steroids) in up to 99 % product yield within several hours with up to 100 % substrate conversion and excellent regio- or diastereoselectivity. Catalyst [Ru(IV)(2,6-Cl2tpp)Cl2] is remarkably active and robust toward the above oxidation reactions, and turnover numbers of up to 6.4x10(3), 2.0x10(4), and 1.6x10(4) were obtained for the oxidation of alpha,beta-unsaturated ketones, arenes, and Delta5-unsaturated steroids, respectively.  相似文献   

20.
A novel two-dimensional complex, [Cu(bbdc)(phen)]·(H2O)(bbdc = 2-bromo-1,4-benzenedicarboxylate dianion; phen = 1,10-phenanthroline), has been synthesized and structurally characterized by single crystal X-ray analysis. The crystal structure consists of infinite chains of [Cu2( 4-bbdc)]2+ units connected by bis-monodentate bbdc ligands, the coordination mode of which [ 4-bbdc] is very rare in the phenyldicarboxylate complexes. The substituent group of bbdc is believed to be the growth key of this coordination network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号